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Abstract
Mutation testing measures a test suite’s ability to detect bugs by
inserting bugs into the code and seeing if the tests behave differently.
Mutation testing has recently seen increased adoption in industrial
and open-source software but sees limited use in education. Some
instructors use manually-constructed mutants to evaluate student
tests and provide general automated feedback. Additional tutoring
requires more intensive instructor interaction such as in office
hours, which requires substantial resources at scale. Prior work
suggests that students benefit from frequent, actionable feedback,
and our work focuses on the challenge of leveraging automation to
give students high-quality feedback when they need it.

We deployed an automated hint system that provides instructor-
written hints related to mutants that student-written tests do not
detect. We evaluated our hint system in a controlled experiment
across four assignments in two introductory programming courses,
comprising 4,122 students. We also analyzed student test suite
revisions and conducted a mixed-methods analysis of student hint
ratings and comments collected by the automated hint system.

We observed a small, statistically significant increase in the mean
number of mutants detected by students who received hints (ex-
periment group) compared to those who did not (control group).
In 25% of instances where students received a hint, they detected
the mutant in a single revision to their test suite. We conclude
with recommendations based on our analysis as a starting point for
instructors who wish to deploy this type of automated feedback.
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• Software and its engineering → Software maintenance tools; •
Applied computing→ Computer-assisted instruction;
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1 Introduction
Despite a growing body of software testing education research,
software testing has long been under-emphasized in computer sci-
ence curricula [7, 10, 13, 16, 20]. Prior work has explored how
to teach testing practices, but evaluating students’ tests and pro-
viding feedback, especially as class sizes increase, poses different
challenges. There is evidence that students benefit from frequent,
actionable feedback [2–5, 10, 18, 19, 21, 24, 25], and leveraging
automation to provide feedback to students holds the promise of
enhancing student learning at large and small scales. Although
there is a large body of research concerned with providing students
with automated feedback on the quality of their implementations
[8, 11, 17, 23], there is still relatively little work examining how to
provide high-quality automated feedback to students on the quality
of their test suites.

The first challenge when evaluating student test suites is choos-
ing how to measure test suite quality. Code coverage, which records
which portions of the source code are exercised by the test suite, is
relatively easy to deploy and interpret its results and is somewhat
common in the classroom [10]. However, code coverage is funda-
mentally limited in its ability to measure bug-finding ability [12].
Mutation testing is a way to measure a test suite’s ability to detect
bugs by making small changes to the source code (each change to
the source code is called a mutant) and seeing if the tests behave
differently, thereby detecting the mutant. The number or percent-
age of mutants that the tests detect is referred to as mutation score.
Mutation score has been shown to correlate with real bug detection
in industrial software [14] and student-written code [22].

The second challenge is providing effective feedback to students.
One such practice is to evaluate student test suites against an
instructor-written set of mutants and give students limited au-
tomated feedback about how many or which mutants their tests
detected [21, 26]. Tutoring students on how they can address gaps in
their test suites often requires more intensive instructor interaction
such as in office hours, which makes this kind of evaluation difficult
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Figure 1: Screenshots of our hint system. The hints were written by instructors, and students could request an instructor-
configured number of hints per submission.

to scale and results in higher-latency feedback for students. Further-
more, a recent study concluded that opaque automated feedback
can inadvertently increase demand for office hours [9].

We deployed an automated hint system that lets students request
instructor-written hints about mutants their tests did not detect. In
our evaluation, we seek to answer the following research questions:

(1) RQ1: Does access to an automated hint system increase stu-
dent test suite quality?

(2) RQ2: What is the relationship between hints and student test
suite revision?

(3) RQ3: What kinds of hints do students perceive as helpful?

2 Methods
We collected data from eight assignments across two terms from
four courses at two institutions. Table 1 presents a summary of
the assignments. Here we describe the assignment grading and
automated feedback, our automated hint system, our datasets, and
the controlled experiment we conducted.

2.1 Assignment Grading and Feedback
Every assignment we collected data from shares certain structural
elements. Students were required to implement code to conform
to a specification and write their own test suites for the implemen-
tation. Students could submit their implementation and tests to
an automated grading system and receive instructor-configured
feedback multiple times per day. Students’ implementations were
graded against an instructor-written test suite. Students’ test suites
were graded against a set of instructor-written mutants. Students
were awarded points for each mutant their test suite detected.

Students were shown one of two types of automated feedback on
their test suites: 1) “Number of mutants” shows how many mutants
their tests detected but no other information about what kind of
bugs the mutants contain; 2) “Mutant names” shows the instructor-
chosen names of the mutants their tests detected and/or did not
detect. Instructor-chosen mutant names generally indicate which
part of the implementation the mutant affects. Table 1 indicates
which assignments used which type of feedback.

Mutant Construction. The mutants were authored by instructors
with the goal of representing potential bugs in the full range of im-
plementation behaviors. They did not include adversarial mutants
that require obscure test inputs to discover. Prior work by An-
drews et al. [1], Kazerouni et al. [15], and Buffardi et al. [6], as

int Matrix_width(const Matrix* mat) {

return mat ->widthheight;

}

List <T>& List <T>:: operator= (const List &l) {

if (this == &l) return *this;

removeAll ();

copyAll(l);

return *this;

}

Figure 2: Examples of instructor-written mutants. The first
is in an accessor for a matrix type. The second is in an over-
loaded operator for a doubly-linked list.

well as our recent prior work [22], suggests that instructors could
use automatically-generated mutants instead of authoring by hand.
However, our prior work also found that detection of instructor-
written mutants authored in this way is strongly correlated with
detection of mutants generated automatically using open source
mutation testing tools [22]. Additionally, many of the mutants the
instructors in our study authored are syntactically identical to mu-
tants that a mutation testing tool would generate. Figure 2 shows
some examples of mutants used.

2.2 Hint System & Hint Development
We implemented a system that lets students request instructor-
written hints as additional feedback. We asked instructors to write
a sequence of hints for each mutant that would mimic the kind
of feedback they would offer to a student who asked a series of
questions about why their tests do not detect more mutants. We
suggested that the sequence of hints for a particular mutant could
increase in specificity (e.g., describing what part of the implementa-
tion the mutant affects vs. describing the specific behavior it alters),
but we did not set any requirements for how vague or specific the
hints should be. We configured the instructor-written hints to be
shown through our hint system with instructor-specified limits on
how many hints students could request per submission. Table 1
shows the limits that instructors chose per assignment. Figure 1
shows screenshots of the hint system’s student interface.

2.3 Datasets
To address our research questions, we required the following:

RQ1. The number of mutants detected by the final revision of
each student-written test suite.



Instructor-Written Hints as Automated Test Suite Quality Feedback SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Assignment Name # Students Control Group Mutant Feedback # Submissions/Day # Hints/Submission
Fall ’23 Spring ’24 Fall ’23 Spring ’24

CS1 P1 1040 634 Mutant names 4 n/a 2
CS2 P1 777* 746* Number of mutants 3 n/a 2
CS2 P2 777* 746* Number of mutants 3 n/a 2
CS2 P3 n/a 756* Number of mutants 3 n/a 2
CS2 P4 762* 698* Number of mutants 3 n/a n/a
PL P1 n/a 72* Number of mutants 3 n/a 1
PL P2 n/a 67* Number of mutants 3 n/a 1
SE P1 n/a 253 Mutant names 5 n/a 2

Table 1: Summary of assignments in the study gathered from courses in an intro sequence (CS1, CS2), programming languages
(PL), and software engineering (SE). * indicates assignments with optional student partnerships where we report the number
of individual students/partnerships who submitted the assignment. Control Group Mutant Feedback indicates the kind of
automated feedback that students received on their test suites before the addition of instructor-written hints.

RQ2. Student test suite revision history, computed as follows.
First, we extracted the names and source code of each test case
per submission. Then, for each adjacent pair of submissions, we
compared the names of test cases. A test case name present on the
left but not the right was marked as a removed test case. A test case
name present on the right but not the left was marked as an added
test case. For each test case name present in both submissions, we
compared the extracted source code of both test versions. If the
source code was different, we marked that as a changed test case.

We also collected each instance where students received a hint
and recorded their “outcomes.” That is, we recorded whether the stu-
dent detected the mutant before requesting another hint (“Mutant
Detected”), whether they requested another hint before detecting
the mutant (“Hint Requested”), or neither (“Nothing”). We recorded
the outcome and the number of revisions until that outcome.

RQ3. Student ratings of hints they received. Our system prompted
students to rate hints as “Very Useful”, “Somewhat Useful”, or “Not
Useful” and optionally leave comments.

2.4 Controlled Experiment
We conducted a controlled experiment as part of our effort to ad-
dress RQ1 and RQ2.We compared two terms of each of the following
four assignments: CS1 P1, CS2 P1, CS2 P2, and CS2 P4. Our control
group is comprised of students in the first term of each assignment
(Fall 2023). Our experiment group is comprised of students in the
second term of each assignment (Spring 2024).

RQ1 (Student test quality). We compared the distributions of the
number of mutants detected by students’ test suites from the control
and experiment groups. On assignments CS1 P1, CS2 P1, and CS2 P2
(where the control group did not receive hints but the experiment
group did), we look for differences in the mean number of mutants
detected as an indication that access to hints helps students write
higher quality test suites. On assignments CS2 P1, CS2 P2, and
CS2 P4, we look for evidence of a lasting effect on students ability
to write high-quality test suites. That is, we examine whether the
experiment group wrote higher quality test suites than the control
group even after access to hints was removed.

RQ2 (Test suite revision). In addition to our analysis of “hint
outcomes” in section 3.2, we perform a comparable analysis to that

of RQ1, looking instead at the number of test suite revisions it took
for students to reach the final number of mutants they detected.

3 Evaluation
3.1 RQ1: Does access to an automated hint

system increase student test suite quality?
Table 2 shows the results of our controlled experiment. We exam-
ined whether students who received hints detect more mutants
than students who did not. On the “CS1 P1” assignment, we do not
see a statistically significant difference between the mean number
of mutants detected by the control and experiment groups. On the
“CS2 P1” assignment, we see the mean number of mutants detected
by the experiment group is higher than that of the control group
by 0.36. We find this difference to be significantly significant but
with a small effect size (rank biserial correlation coefficient r=0.06).
On the “CS2 P2” assignment, we do not see a statistically signif-
icant difference between the mean number of mutants detected
by the control and experiment groups. We note that students in
both groups knew their final score on each resubmission, which
potentially limits the differences in mean we see. We may see larger
effects in how quickly students reached their solution. On the “CS2
P4” assignment, neither the control nor experiment groups had
access to the hint system. This lets us examine whether receiving
hints has some short-term lasting effect on students’ ability to write
higher-quality test suites. We note that the experiment group also
received hints on the “CS2 P3” assignment, but we do not compare
the control and experiment groups for this assignment because the
mutants used in the Spring 2024 semester (the experiment group)
differed from the mutants used in the Fall 2023 semester (the control
group). We see that the mean number of mutants detected by the
experiment group on the “CS2 P4” assignment is 0.6 higher than
that of the control group. We find this difference to be statistically
significant but with a small effect size (r=0.068).

3.2 RQ2: What is the relationship between hints
and student test suite revision?

We address this question using results from our controlled experi-
ment and with a quantitative analysis of revision history and out-
comes (e.g., how many revisions after receiving a hint did students
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Number of mutants detected Number of revisions
CS1 P1 CS2 P1 CS2 P2 CS2 P4 CS1 P1 CS2 P1 CS2 P2 CS2 P4

Ctrl Expr* Ctrl Expr* Ctrl Expr* Ctrl Expr Ctrl Expr* Ctrl Expr* Ctrl Expr* Ctrl Expr
N 1015.00 607.00 735.00 693.00 714.00 667.00 721.00 665.00 1015.00 607.00 735.00 693.00 714.00 667.00 721.00 665.00

Mean 7.30 7.23 12.64 13.00 11.67 12.05 13.59 14.19 2.76 2.98 2.76 3.21 3.63 3.86 3.61 3.93
Stdev 1.27 1.42 3.66 3.42 6.50 6.52 4.36 3.67 1.76 1.93 1.86 2.09 2.32 2.47 2.56 2.65
Min 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
Q1 7.00 7.00 12.00 13.00 7.00 7.00 12.00 13.00 1.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00

Median 8.00 8.00 14.00 14.00 14.00 14.00 15.00 15.00 2.00 3.00 2.00 3.00 3.00 4.00 3.00 3.00
Q3 8.00 8.00 15.00 15.00 17.00 17.00 16.00 16.00 4.00 4.00 4.00 4.00 5.00 5.00 5.00 5.00
Max 8.00 8.00 16.00 16.00 20.00 20.00 19.00 19.00 12.00 13.00 13.00 14.00 14.00 23.00 21.00 21.00
U 307039.5 239414.5 227482.0 223368.0 289282.0 222460.5 225205.5 220772.0

p-value 0.900 0.045 0.149 0.026 0.035 <0.001 0.078 0.010
r 0.003 0.060 0.045 0.068 0.061 0.127 0.054 0.079

Table 2: RQ1 & RQ2 Controlled Experiment: Descriptive statistics and ANOVA for number of mutants detected and number of
test suite revisions on each assignment. * denotes assignments where the experiment group had access to hints.

detect the underlying mutant?). First, we compare the mean number
of test suite revisions made by the control and experiment groups.
On the “CS1 P1,” “CS2 P1,” and “CS2 P4” assignments, we see a
statistically significant increase in the mean number of revisions
from the control group to the experiment group, with the mean
number of revisions made by the experiment group being higher
by 0.22, 0.45, and 0.32. We see small effect sizes for each of these
results, with rank-biserial correlation coefficients of r=0.061, 0.054,
and 0.079, respectively. We do not see a statistically significant dif-
ference between the mean number of revisions made by the control
and experiment groups on the “CS2 P2” assignment.

Next, we examine three categories of outcomes from receiving
individual hints: 1) Mutant Detected, where a student detected the
underlying mutant after revising their test suite; 2) Hint Requested,
where a student requested another hint for the mutant before de-
tecting it (note that for some assignments, students could request
multiple hints per submission, making it possible to request another
hint before revising their test suite); 3) Nothing, where the student
neither detected the mutant nor requested another hint. In aggre-
gate, 25% of instances where students received a hint resulted in
the student detecting the related mutant in a single revision. Table
3 shows a per-assignment breakdown of hint outcomes. On 3/7
assignments, we see a higher percentage of “Mutant Detected” than
“Hint Requested” outcomes. On the remaining four assignments,
we see that between 31%-42% of hints shown resulted in “Mutant
Detected.” In over 80% of instances where a student was shown a
hint, they either detected the mutant or requested another hint. In
the latter outcome, students requested the next hint before revising
their tests 65% of the time and after a single revision 27% of the
time. Table 3 also shows a breakdown of how many revisions it
took students to detect mutants after receiving a hint (but before
requesting another hint). We see the highest proportion of single-
revision detection for the CS2 assignments, with 85%, 84%, and 77%
of hints shown resulting in the mutant being detected after a single
revision. We see the lowest proportion of single-revision detection
for SE P1, with 42% of hints resulting in single-revision detection,
24% of hints resulting in the mutant being detected in 2 revisions,
and 21% resulting in the mutant being detected in 3 or 4 revisions.

3.3 RQ3: What kinds of hints do students
perceive as helpful?

We take a multi-faceted approach, augmenting our quantitative
results with a qualitative examination of specific hints and student
feedback. We focus on the the kind of information given in hints
and how useful students rate those hints to be, including what
points of frustration are indicated by student comments on hints.

3.3.1 What is the relationship between the kind of information in
hints and how students perceive those hints? Table 5 shows the break-
downs of student hint ratings with respect to Hint Number. Hints
with a higher Hint Number tend to reveal more information about
the underlying mutant. We examine these results together with a
qualitative analysis examining why some hints were more or less
successful.

Hints Rated “Very Useful”. In several assignments, we observe
that hints rated as “Very Useful” are more likely to have higher Hint
Numbers than their “Somewhat Useful” counterparts. For example,
Table 5 shows that 26% of “Very Useful” hint ratings vs. 9% of
“Somewhat Useful” hint ratings for the CS2 P2 assignment had Hint
Number 2, and 4% of “Very Useful” hint ratings vs. 2% of “Somewhat
Useful” hint ratings for the CS2 P3 assignment had Hint Number 3.
Below are some examples of hints frequently rated as “Very Useful.”
These hints tend to reveal specific details about the underlying
mutant or provide specific guidance on how to construct a test case
that detects the mutant.

• CS2 P2: Simple Player make_trump() Bug #2 - Ensure
you have a test that verifies the player is counting the
left bower as a trump. For example, a case where they
will only order up if the left bower is (correctly) treated
as a trump. Hint Number: 2. This hint describes an edge
case and gives some information on how a test case that
detects that mutant might be constructed.

• CS2 P3: Iterator::operator==() Bug #1 - Consider adding
a test case that compares a default-constructed iterator
with iterators from a list. The default-constructed iter-
ator should not be equal to any of these iterators, not
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Assignment # Hints Shown Mutant Detected Hint Requested Nothing
Total 𝑁𝑅 = 1 𝑁𝑅 = 2 2 < 𝑁𝑅 ≤ 4 𝑁𝑅 > 4

CS1 P1 535 47% 74% 20% 5% 1% 40% 14%
CS2 P1 1138 47% 85% 11% 4% 0% 36% 18%
CS2 P2 1897 31% 84% 12% 4% 1% 51% 18%
CS2 P3 4196 35% 77% 14% 7% 2% 54% 10%
PL P1 552 50% 65% 14% 13% 7% 35% 14%
PL P2 543 42% 57% 21% 13% 9% 45% 13%
SE P1 3149 37% 42% 24% 21% 12% 51% 13%
All 38% 49% 13%

Table 3: Hint outcomes per assignment. The “Mutant Detected” column shows the breakdown of how many revisions it took
students to detect the mutant (“NR” means “number of revisions”).

CS1 P1 CS2 P1 CS2 P2 CS2 P3 PL P1 PL P2 SE P1
Total # Hints 535 1138 1897 4196 552 543 3149
# Rated Hints 411 (77%) 984 (86%) 1546 (81%) 3375 (80%) 515 (93%) 495 (91%) 2644 (84%)

Table 4: Total number of hints shown to students and how many of those hints were rated by students.

Assignment Very Useful Somewhat Useful Not Useful
Hint #: 0 1 2 3 N 0 1 2 3 N 0 1 2 3 N

CS1 P1 52% 33% 13% 1% 82 45% 41% 13% 135 71% 16% 9% 4% 194
CS2 P1 65% 25% 10% 367 65% 29% 7% 446 44% 50% 6% 171
CS2 P2 31% 41% 26% 2% 469 52% 38% 9% <1% 733 64% 28% 7% <1% 344
CS2 P3 39% 28% 29% 4% 1045 45% 38% 15% 2% 1497 48% 38% 12% 2% 833
PL P1 43% 57% 113 63% 37% 288 73% 27% 114
PL P2 26% 74% 118 61% 39% 309 63% 37% 68
SE P1 34% 38% 26% 2% 509 42% 40% 15% 3% 1434 63% 26% 10% 1% 701

Table 5: Breakdown of “Hint Numbers” with respect to each possible hint rating. “Hint Number” is the zero-index of the
instructor-defined, per-mutant hint ordering.

even an end() iterator. Hint Number: 3. This hint describes
what to set up and what post-conditions to check.

We observe a similar trend in the PL assignments where “Very
useful” hint ratings are more common for hints with Hint Number
1 than Hint Number 0 (mutants on these assignments only had 2
hints each). This is despite the fact that PL hints are less specific
than the CS2 hints above, e.g., “This bug affects error checking
in quote.” Students may find this kind of hint more helpful if it
addresses a gap in their understanding of what classes of behaviors
to test, such as one student who commented, “This is very useful,
without it, I wouldn’t think of do[ing] error checking for quote.”

Hints Rated “Somewhat Useful”. “Somewhat Useful” was the most
common rating overall, with 48.6% of all hints being rated as such
by students. These hints are more likely to have lower Hint Num-
bers. In Table 5 we see that for every assignment, at least 42% of
“Somewhat Useful” hint ratings have Hint Number 0, and at least
80% of “Somewhat Useful” hint ratings have Hint Number 0 or 1.
These hints tend to reveal general information about what method
or behavior the mutant affects, and we observe similar patterns with
this kind of hint on CS2 assignments. Below are some examples of
hints frequently rated as “Somewhat Useful”.

• PL P1: This bug affects division procedures. Since this
hint only reveals what part of the program being tested the
mutant lies in, it seems more likely to be considered useful by
students who only need to be pointed in the right direction
of where to consider additional test cases. For example, one
student commented on this hint, “Shows a general location
to look, so I would say it’s sufficient.”

• SE P1: This bug results in an incorrect turn order. Simi-
lar to the above hint, this points students toward the class
of behaviors that the mutant affects, here describing the
particular post-condition that is affected by the mutant.

Hints Rated “Not Useful”. While several factors may make hints
more likely to be rated as “Not Useful,” students may rate the same
hint differently depending on context. Based on comments students
submitted with their hint ratings, the two most common points of
frustration arise when students: 1) receive redundant information;
2) believe that their tests already cover what a hint describes.

For example, all of the CS1 P1 hints with Hint Number 0 remind
the student to call the test functions they wrote: “Check that your
test functions are called from within startTests in test.cpp.” We see
in Table 5 that 71% of “Not Useful” hint ratings on this assignment
are for this kind of hint. Comments from students who rated these
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hints as “Not Useful” tend to state that the student already knew
this or had already made sure that they were calling all their test
functions. However, in one instance, a student commented on a
subsequent hint that they realized that their mistake was that they
didn’t call one of their test functions after all.

On 5/7 assignments, over 60% of “Not Useful” hint ratings were
for hints with Hint Number 0. For assignments other than CS1 P1,
hints with Hint Number 0 tend to point out the general area of
the program being tested where the mutant lies. On the CS2 and
PL assignments, the automated grading system was configured to
not reveal this information outside of hints, with mutant names
being obfuscated instead of showing the more detailed, instructor-
facing mutant name. On the SE P1 assignment, the automated
grading system was configured to show students the instructor-
facing mutant names, resulting in more frequent comments that
hints with Hint Number 0 for this assignment were merely restating
information revealed by the mutant names.

Another source of frustration is when students believe they
already tested the behavior that a hint refers to. For example, one
comment on the PL P1 hint “This bug affects division procedures.”
states, “I did test zero division but didn’t catch bugs. This is just
a random guessing game.” This frustration can even arise with
hints that reveal detailed information about the underlying mutant.
For example, one comment on the CS2 P3 hint that we used as an
example of a hint frequently rated “Very Useful” states, “I have a
test that does exactly this.”

4 Discussion
We discuss the implications of our results for software testing edu-
cators and reflect on the threats to the validity of our conclusions
and the efforts that we took to mitigate those threats.

4.1 Implications for Educators
We observed that, on average, students who had access to hints
detected more mutants and made more revisions to their test suites,
even after access to hints was taken away. We also observed ev-
idence that certain kinds of hints can help students make more
productive revisions. Providing this fast feedback loop may have
lasting benefits to students’ software testing skills and could poten-
tially contribute to a reduction in demand for office hours, freeing
up instructor time to address more complex student questions. Our
results also provide a starting point in developing best practices for
authoring software testing hints.

Avoid redundant information between hints and other
sources.We observed a common point of frustration were hints
that gave information that students already knew, either from other
hints they had received or from other parts of the automated feed-
back they receive (Section 3.3.1). We recommend not using hints
to convey general reminders, and instead give them in some other
way.

Receivingmultiple hints per submissionmay not bemean-
ingfully different from receiving one hint with more infor-
mation. In section 3.2 we observed that in 65% of instances where
students requested another hint, they did so before revising their
test suite. While allowing multiple hints per submission may be
beneficial to some students, we observed student frustration when

they were able to request two hints on the same submission but
felt that the information in one of those hints was redundant.

“Too much” information may be OK. A common concern in
our discussions with instructors was that “giving away” too much
information could inhibit student learning. However, our controlled
experiment evaluation in Section 3.1 shows that students in the
experiment group who had access to the most revealing hints in our
study (the CS2 assignments) still detected more mutants on average
than students in the control group even after access to hints was
taken away. We also observed in Section 3.3.1 that students were
more likely to consider very-revealing hints as being very useful,
suggesting that this is the kind of feedback students needed.

4.2 Threats to validity
Construct: Are we asking the right questions? Our research ques-

tions were prompted by our experience providing tutoring to stu-
dents when using mutation testing to evaluate student test suites.
We posed our research questions before examining our dataset.

Internal: Do our methods and datasets affect the accuracy of our
results? Our controlled experiment was conducted using moder-
ately complex programming assignments across multiple terms.
There may be unknown confounds arising from differences be-
tween students in each term. The course materials (e.g., lecture
content, assignments) were synchronized between terms and across
instructors within terms, limiting differences in course content.

We used the number of revisions as a measurement of how
quickly students improved their test suites. While we could not
control for student activities between revisions (e.g., going to office
hours), we also examined student hint ratings to provide a fuller
picture of how helpful the hints were.

External: Would our results generalize? Our evaluation uses eight
programming assignments, and they may not be representative of
every kind of programming assignment. However, our assignments
were drawn from four different courses across two institutions,
comprising 4,122 students.

5 Conclusion
We investigated the impact of an automated hint system using
instructor-written hints on students’ ability to write higher-quality
test suites. Our results show a small, statistically significant increase
in mutant detection by students who received hints vs. students
who did not. Additionally, we saw that 25% of instances where
students received a hint resulted in them detecting the underly-
ing mutant in a single revision, suggesting that certain kinds of
hints provided students with the guidance they needed when they
needed it. Our mixed-methods analysis of instructor written hints
provides a starting point for developing hint-writing best practices.
Future research in this area should consider additional kinds of
assignments and other strategies for authoring hints.
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