
A Tool for Mutation Analysis in Racket

Bambi Zhuang
Northeastern University

Boston, USA

zhuang.ba@northeastern.edu

James Perretta
Northeastern University

Boston, USA

perretta.j@northeastern.edu

Arjun Guha
Northeastern University

Boston, USA

a.guha@northeastern.edu

Jonathan Bell
Northeastern University

Boston, USA

j.bell@northeastern.edu

Abstract—Racket is a functional programming language that
is used to teach CS1 at many high schools and colleges. Recent
research results have shown that mutation analysis can be an
effective substitute for manual grading of student test cases.
In order to evaluate its efficacy in our college’s introductory
programming courses, we created a prototype mutation analysis
tool for Racket. We describe the design and features of the
tool and perform a feasibility study using two assignments
from an intro CS course where student test suite thoroughness
was evaluated by hand by human graders. In our results,
we find a moderate correlation between mutation score and
hand-grading test suite quality score and conduct a qualitative
analysis to identify situations where mutation score and hand-
grading score do not correlate. We find that, compared to hand-
grading, mutation analysis may require more stringent adherence
to the interface specified in an assignment as well as more
precisely specified assignments. On the other hand, inter-reviewer
reliability is a known challenge of hand-grading, and we observe
several instances where hand-graders may have assigned the
wrong score. Given the relatively cheap cost to providing mu-
tation analysis feedback to students (compared to hand-grading
feedback), mutation analysis still provides the opportunity to
provide faster, more frequent, feedback to learners, enabling
them to improve their testing practices further. Future work will
study the effectiveness of various mutation operators in Racket
and perform larger-scale evaluations.

Index Terms—Racket, mutation testing, mutation analysis,
mutation analysis tool

I. INTRODUCTION

Racket is a mostly-functional programming language that is

a modern dialect of Lisp and a descendant of Scheme. Its

simplicity, teaching-language packs, and expression-focused

syntax contribute to Racket’s use in computer science educa-

tion at several prestigious undergraduate programs, including

our own. The curriculum, based on the text How to De-
sign Programs integrates education on software testing [1].

DrRacket, the IDE that accompanies the language, shows

line coverage using color-coded highlights and supports many

different methods of unit testing. Automated grading scripts

check the functional correctness of student code, and DrRacket
provides code coverage metrics of student test cases on their

own implementation, but code coverage has known limitations.

To date, there is no more-robust, automated approach for

grading the quality of student test cases in Racket.

This work is partially supported by a Khoury College Teaching Innovation
Grant and National Science Foundation grants CCF-2102288, CCF-2100037
and CNS-2100015.

Recent research results have shown that mutation analysis

is an effective substitute for manual grading of student test

cases [2]. In this approach, programming assignments require

students to implement a standardized interface along with tests

for their interface. In order to grade the students’ test cases,

the grading server performs mutation analysis on an instructor-

written solution, identifying how many mutants are detected

by each student’s test suite.

Popular, existing mutation analysis tools include PIT and

Jumble for Java; Stryker for JavaScript, C#, and Scala; Mull

for C++. These tools share the well-researched premise of how

the most effective test suites for detecting trivial faults, such

as flipped numerical comparisons, also best detect higher-level

faults. MuCheck implements common mutation operators for

Haskell [3], [4]. However, we are unaware of any other off-the-

shelf mutation analysis tools for other functional languages or

for Racket. Functional languages present many opportunities

for new mutation operators, and determining the ideal set of

mutation operators to use is an interesting research challenge.

To fill this gap, we present MACKET , a mutation anal-

ysis tool for Racket. We perform a preliminary evaluation

of MACKET using a set of programming assignments and

student test cases from a course at our institution. During

that semester, each student test suite was manually graded

by a teaching assistant. We compare the mutation scores of

each test suite with their manual grading scores in an effort to

determine whether our mutation operators and the tool could

be used as a substitute for hand grading in future semesters.

We seek to answer the following research question:

1) RQ: Is mutation analysis a good substitute for manual

grading of test suite quality in Racket?

II. A TOOL FOR MUTATION ANALYSIS IN RACKET

MACKET is a mutation analysis tool designed to support

mutation analysis for Racket programs and more generally the

use of mutation analysis in pedagogical contexts. We describe

a few key aspects of its design, including a list of mutation

operators we implemented.

A. Design and Tool Usage

MACKET uses a multi-phase process in which mutants can

be generated before they are executed. Using this model,

instructors can generate the mutants, determine which mutants

should be used for grading, and then specify which mutants to

include or exclude during the mutant execution phase. Prior to

308

2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

979-8-3503-3335-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSTW58534.2023.00061

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

V
al

id
at

io
n

W
or

ks
ho

ps
 (I

C
ST

W
) |

 9
79

-8
-3

50
3-

33
35

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

ST
W

58
53

4.
20

23
.0

00
61

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 23:53:07 UTC from IEEE Xplore. Restrictions apply.

the mutant execution phase, MACKET supports checking for

and filtering out test cases that contain false positives (i.e.,

tests that fail when run against a correct implementation).

This allows students to receive partial credit and feedback

on the rest of their test cases, and distinguishes it from other

mutation tools that require all tests to pass on the (not mutated)

system under test. The interface for the mutant execution

phase is language-agnostic, allowing for future extension to

other languages. In theory, a user could generate mutants with

another tool and run them using MACKET . MACKET produces

JSON- and HTML-formatted results using the same schema

and display frontend used by Stryker Mutator [5].

B. Mutation Operators

In selecting which mutation operators to implement, we

draw from the mutation analysis literature and state-of-the-

practice mutation analysis tools for imperative languages such

as PIT [6] and Stryker [7]. Since functional languages such

as Racket do not have certain control-flow structures (such as

loops) common to imperative languages (relying instead on

programming techniques such as recursion and higher-order

functions), our first step was to determine which imperative

mutation operators have a meaningful equivalent in Racket.

For example, some mutation operators, such as replacing

arithmetic operators, have a clear mapping from an imperative

language to Racket. Others operators, such as statement dele-

tion, do not have an immediately obvious mapping because

Racket is an expression-based language that does not have

statements. We selected a subset of standard mutation opera-

tors for imperative languages that have a clear mapping from

their imperative to functional versions. We also implemented

two operators specific to Racket and/or functional languages

in general.

Operators Based on Standard Imperative Operators:
• ArithmeticMutator: switching between +, -, *, / opera-

tors

• LogicalMutator: switching between AND and OR
• IfMutator: changing the predicate of if to True and

False
• CondMutator: changing the predicate(s) of the condi-

tional to True and False
• WrapWithNotMutator: inverting any boolean return by

wrapping with the not operator

• FlipNumSignMutator: flipping the sign of numeric literals

• ArithmeticDeletionMutator: deleting parts of arithmetic

operations and replacing with the arithmetic parts (ex.

(+ a b) → a)
• NumberComparisonMutator: switching between <, <=,
==, >=, > comparisons

• FlipBooleansMutator: changing True to False and vice

versa

• NumLiteralsMutator: replacing numeric literals with 0,
-1, 1, value+1, value-1

• EmptyStringMutator: replacing strings with empty strings

• BoolParamsToBool: replacing the parameters of AND, OR,
NOT with True and False

Functional- or Racket-specific Operators:
• BoolFuncToBoolMutator: A mutator that contains a list

of known boolean-return methods in the language such as

andmap, ormap, and comparison methods and replaces

them with True or False. It also finds calls to methods

whose names end in ?, which is a Racket convention

for bool-returning methods, and replaces those calls with

True or False.
• EmptyListMutator: Replacing lists with empty lists. We

note that Le et al. [3] implemented this operator for

Haskell.

Non-applicable Imperative Operators Due to the available

language features of Racket, the following is a list of non-

applicable mutator operators that we did not implement:

• Stryker: Block Statement, Optional chaining, Regex [7]

• PIT: Void Method Calls, Null returns, Constructor Calls,

Remove Increments [6]

a) Other Unused Operators: We wrote one homework-

specific mutator that swapped calls to similar methods (e.g.,

fold-left & fold-right); however, that assignment did

not end up being graded for test suite quality. Future work

might consider evaluating such mutators in the context of

student test cases.

III. EVALUATION METHODOLOGY

Our goal in this study is to examine the feasibility of

evaluating test suite quality in intro CS assignments writ-

ten in Racket using mutation analysis compared to human

hand-grading. We collected mutation scores and hand-graded

test suite quality scores from two programming assignments

and examined the correlation between these scores. We also

manually inspected the test suites and conducted a qualitative

analysis on any outliers. We describe the datasets we collected

in more detail below.

A. Datasets

We collected data from two assignments from one semester

of an intro CS course. In order to address our research

questions, we required the following information:

1) Student test suites, which were graded by hand and

assigned a discrete score reflecting the thoroughness of

the test suite. The graders were graduate-level teaching

assistants who were responsible for writing the hand-

grading rubrics with the oversight of the course instruc-

tor.

2) Mutation scores for those test suites, computed using

MACKET

3) Mutation scores for the instructor-written test suites,

which were also used to evaluate student implementation

correctness.

We selected programming assignments where student test

suite quality was graded by hand and where the abstractions

being tested were well-specified. That is, student test suites

should behave correctly when run against other implemen-

tations. We examined a total of 56 assignment submissions

309

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 23:53:07 UTC from IEEE Xplore. Restrictions apply.

across two programming assignments. We collected only one

submission per student for each assignment. Here we briefly

summarize each assignment and their grading rubrics:

List abstractions. Students were required to implement 5

list-processing functions, e.g., interleave, intersection, earliest,

and write test cases for those functions. We collected 29

submissions. Test cases were graded on a discrete scale of

(0, 1, 1.5, 2), with 0 meaning “No tests present,” 1 meaning

“Incomplete coverage,” 1.5 meaning “Missing edge cases,” and

2 meaning “Tests correct.”

Self-Referential Data. Students were required to implement

two basic binary-tree traversal functions and write test cases

for those functions. We collected 27 submissions. Test cases

were graded on a discrete scale of (0, 1, 2), with 0 meaning

“No tests present,” 1 meaning “Incomplete coverage,” and 2

meaning “Tests correct.”

We ran MACKET on all the student test suites we collected,

generating mutants from the instructor-written solution, and

collected mutation scores for each test suite. When collecting

mutation scores for student test suites, we first discarded

individual test cases that displayed false positives when run

against a correct instructor implementation. We note that hand-

graders may not have performed such a step, as they did not

run the student test suites. We discarded mutants applied to

parts of the instructor solution that students were not required

to test. We also discarded mutants that were exact source code

duplicates of each other. We then looked for a correlation

between hand-graded test quality scores and mutation scores.

We also conducted a qualitative analysis of submissions with

high hand-graded scores but low mutation scores and vice-

versa, looking for instances where the hand-grading rubric

was applied incorrectly or where additional mutation operators

may be required in order to compute a more accurate mutation

score.

IV. RESULTS

We conduct an analysis of the data we collected from these

two programming assignments.

A. Assignment 2: List Abstractions

In Figure 1, we see a moderate correlation between muta-

tion score and hand-graded test suite quality score (Pearson

r=0.51). MACKET generated a total of 164 mutants, and we

discarded 28 that were exact duplicates and 82 that were

applied to parts of the instructor implementation that students

were not required to test. The instructor-written test suite

achieved a mutation score of 79.63%, but we were able to

increase that score to 94.44% by adding additional test cases.

The lower instructor test suite mutation score appears to be

caused by there being no test cases for one of the methods

students were required to implement.

We observe several instances where a student test suite’s

hand-graded test suite quality score does not align with that

test suite’s mutation score. For example, we see five (lower

dots at hand grade 10) student test suites that achieved the

5 6 7 8 9 10

Handscore (out of 10)

55

60

65

70

75

80

85

90

95

M
u
ta
ti
o
n
S
c
o
re

P
e
rc
e
n
ta
g
e

|

Fig. 1. Plot of mutation score versus hand score for Assignment 2. We
see a moderate correlation (Pearson r=0.51). The maximum hand-grading
score possible was 10 points (two for each of the five methods) and the
maximum possible mutation score was 94.4 due to equivalent mutants. After
manual analysis, most of the visual outliers can be explained by either a
decreased mutation score due to discarded tests (from under-specification of
the assignment) or to an inaccurate hand score (from inconsistencies between
hand graders).

maximum possible hand-grading score despite having muta-

tion scores as low as 81.48%. We also see a (bottom dot at

7) student test suite with a hand-grading score of 7/10 despite

having a low mutation score of 55.55%. Furthermore, we see

two (dots left of 7) student test suites with hand-grading scores

less than 7 despite having mutation scores of at least 75%. We

note further that among student test suites with a hand-grading

score of 7, we see a wide range of mutation scores, as low as

55.55% and as high as 92.59%.

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Handscore (out of 10)

55

60

65

70

75

80

85

90

95

M
u
ta
ti
o
n
S
c
o
re

P
e
rc
e
n
ta
g
e

|

Fig. 2. Plot of mutation score versus hand score for Assignment 2 after
updating hand scores to correct for inconsistent applications of the hand-
grading rubric. We see a strong correlation (Pearson r=0.73). The maximum
hand-grading score possible was 10 points (two for each of the five methods)
and the maximum possible mutation score was 94.4 due to equivalent mutants
(out of 54 mutants total after filtering).

We conducted a manual qualitative analysis of every student

test suite and adjusted hand-grading scores to correct inconsis-

tent applications of the rubric. Figure 2 contains the updated

results. After adjusting the hand-grading scores, we see the

correlation between mutation score and hand-graded test suite

quality score increase to r=0.73.

a) Qualitative Analysis: We manually inspected every

student test suite for this assignment to identify why some

hand-grading and mutation scores did not correlate. We found

310

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 23:53:07 UTC from IEEE Xplore. Restrictions apply.

seven test suites that contained at least one test case that we

discarded due to the presence of false positives when run

against a correct instructor implementation. However, all of

these false positives were due to under-specification of the

function being tested, and hence did not receive any penalty

for this in the manual grading. For example, 7 of these test

suites expected the powerlist function to return elements

in reverse order from what the instructor suite implemented

(the order of returned list elements was not specified in

the assignment description). The eighth test suite expected

that earliest function’s arguments should be placed in a

different order (while the assignment description implies the

order of arguments, it does not precisely specify it). In all of

these cases, the hand-graders appear to have allowed for these

variations in cases where the behavior is under-specified.

We also identified two test suites where hand-graders may

have assigned too high a score and five where hand-graders

may have assigned too low a score. We determined this

by manually examining the test suite code and identifying

situations where similar test suites received different scores.

In each of these cases, we determined what the correct score

should be and updated those scores in our dataset before

recomputing the correlation.

b) Assignment 3: Binary Tree Traversal: The correlation

between mutation score and hand-graded test suite quality

score for this assignment is undefined. In Figure 3 we see

that all student test suites received the same hand-graded test

suite quality score. We see a mutation score of 100% for all

student test suites except for one, which has a mutation score

of 0%. In the one instance where a student test suite did not

detect any mutants, this was because the student’s tests passed

arguments to the method being tested in reverse order, which

caused those tests to display false positives and be discarded

by our tool. The hand-graders appear to have allowed for this

variation, despite the order of parameters being well-specified

in the assignment instructions. MACKET generated a total of

136 mutants, and we discarded 8 that were exact duplicates and

121 that were applied to parts of the instructor implementation

that students were not required to test. Interestingly, we found

that the instructor test suite failed to detect one mutant that

all but one of the student test suites detected. This mutant

replaced a call to plus with one of its operands in the base

case of one of the tree traversal methods.

V. DISCUSSION

We discuss the implications of our results for software

testing researchers, software testing educators, and mutation

analysis tool builders. We also reflect on the threats to the

validity of our conclusions and the efforts that we took to

mitigate those threats.

A. Implications for Researchers

The results of our study suggest that evaluating test suite

quality using mutation analysis is feasible in intro CS courses

using Racket. Future work can examine the efficacy of muta-

tion analysis on a wider range of programming assignments

0 1 2

Handscore (out of 2)

0

20

40

60

80

100

M
u
ta
ti
o
n
S
c
o
re

P
e
rc
e
n
ta
g
e

Fig. 3. Plot of mutation score versus hand score for Assignment 3. We see
an undefined correlation between hand-graded test suite quality score and
mutation score because all the student test suites received the same hand-
grading score. The two methods were graded together with a maximum hand
score of 2, and the maximum possible mutation score was 100% (out of
7 mutants total after filtering). The single point with a mutation score of
0% and a hand score of 2 is explained by the student violating assignment
specifications, resulting in all their test being thrown out due to false positives
by our tool.

and explore potential new mutation operators for Racket. We

note the importance of making sure assignments are well-

specified when conducting mutation analysis on student test

suites. Many of the mutation score outliers we observed

were caused by students testing an implementation that was

allowed by the assignment specification but different from the

instructor’s implementation.

B. Implications for Educators

Our study reveals certain trade-offs between mutation analy-

sis and hand-grading of student test suite quality. While human

hand-graders are able to be more flexible in their grading,

they may be less consistent in their application of the grading

rubric. We observed several instances where hand graders

appear to have applied the grading rubric inconsistently. For

example, deductions were applied to most students who didn’t

have sufficient tests for the method earliest; however, one

student who didn’t have any explicit tests received almost full

credit. We note that the correlation between mutation score and

hand-graded code quality score increased significantly after

correcting for inconsistent application of the hand-grading

rubric. It may be possible to improve human grader accuracy

by providing them with the mutation analysis results, and

future work may explore this question. Mutation analysis

produces more consistent results in this regard but requires

that the interfaces being tested be well-specified. On the

other hand, mutation analysis can also check test suites for

correctness as well as quality, which may be harder for human

graders to do by hand. We note that precise assignment

specifications are likely more desirable as class size increases.

Mutation analysis can also potentially be used to provide

frequent, actionable feedback to students on the quality of their

test suites.

We also observe that mutation analysis can be useful to

instructors when examining the quality of their own test suite.

311

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 23:53:07 UTC from IEEE Xplore. Restrictions apply.

Knowing which mutants are undetected, instructors can make

an informed decision on whether to strengthen their test suite

or exclude certain behaviors from grading. For example, we

discussed the single mutant undetected by the instructor test

suite for Assignment 3 with the instructor, who agreed that

the mutant is a case that students should be expected to write

tests to detect, although it sparked an interesting discussion of

whether it would be coupled with other mutants. Future work

should investigate coupling effects in the context of testing

education.

C. Implications for Tool Builders

We believe that supporting phase separation and including

a more fine-grained false positive check are useful features

for pedagogical applications of mutation analysis. The default

behavior of traditional mutation analysis tools (e.g. PIT [8]

or Stryker [5]) is to require all tests to pass on the system

under test before mutation is performed. However, by filtering

out tests with false positives rather than aborting if any false

positives are present, students can be given feedback on

the thoroughness of their remaining correct tests as well as

feedback on which tests contain false positives. Additionally,

being able to generate mutants ahead of time makes it possible

to filter out equivalent and trivially detectable mutants and

run student tests against only the remaining mutants. Other

advanced mutation analysis tools, such as MuCPP [9] also

pre-generate mutants, but this technique is largely unsupported

by state-of-the-practice Pitest [8], Stryker [5] and mull [10].

Future work might specifically examine different use cases

for pre-generating and filtering mutants before attempting to

execute them.

D. Threats to validity

a) Construct: Are we asking the right questions?: Our

research questions are based on established research questions

from the mutation analysis literature. We posed our research

question before we examined our dataset. These questions

were prompted by our experience evaluating student test

suite quality by hand and evidence that students benefit from

receiving frequent, actionable feedback.

b) Internal: Do our methods and datasets affect the
accuracy of our results?: Our research question requires

assignments where student test suites were graded by hand

for thoroughness and where the assignment specification was

precise enough to support mutation analysis. Because of this,

we were only able to include two assignments, and both of

these assignments had portions where we could not conduct

mutation analysis.

There could be bugs in MACKET and the other scripts

we wrote. We carefully examined the output of each step

in our analysis and investigated discrepancies. By manually

inspecting the source code of all of the student test suites, we

were able to distinguish between bugs in our tools, hand-grader

errors, and assignments being under-specified. We corrected

all of the bugs we found in our tools before finalizing the

data-sets.

c) External: Would our results generalize?: Our evalu-

ation uses two programming assignments, and they may not

be representative of programming assignments in Racket used

in other intro CS courses. We are careful to avoid claiming

that our results will generalize, and share them as a work-

in-progress. Future work will conduct a similar analysis on

additional Racket programming assignments.

VI. RELATED WORK

Most existing mutation analysis tools support imperative

languages such as Java [8], JavaScript/TypeScript [5], C# [5],

and C++ [10]. While Lazarek’s “Mutate” library provides

an API for defining mutation operators in Racket, we are

not aware of any “out-of-the-box” mutation analysis tools

for Racket other than MACKET . Le et al. [3] have studied

mutation analysis in functional programming languages such

as Haskell, and there are also several mutation analysis tools

for CoQ [11], [12].

Le et al. describe three functional mutation operators in

particular: reordering pattern matching, which the assignments

we analyzed did not use; mutation of lists, of which we im-

plemented the “list identity” portion; and type-aware function

replacement, which we only implemented heuristically for

bool-returning functions, as Racket is dynamically typed.

There is a growing body of work on the effectiveness of

mutation analysis for evaluating student test suite quality. Jia

and Harman present a survey on mutation analysis [13], which

Just et al. [14] show is correlated with real-fault detection, even

after controlling for coverage. Other work examines the extent

to which mutants are coupled to real faults in student-written

code or manually-seeded faults written by an instructor [2],

[15]. Code Defenders [16] is an interesting example of how

teaching software testing can be enhanced with gamification,

and perhaps there is future work that could explore the use of

mutation analysis tools in such a context. The effectiveness of

mutation analysis depends on the kinds of mutants generated,

and there are several ways to improve the mutant generation

process [17], [18]. Our study suggests that many traditional

mutation operators for imperative languages can be effectively

adapted and used in functional languages and also implements

one mutation operator specific to functional languages and one

operator specific to Racket.

VII. CONCLUSION

Mutation analysis can be an effective approach for providing

automated feedback to students about the quality of their of

their test cases. We implemented MACKET , a tool for mutation

analysis of code written in Racket, a functional language

that is used in introductory programming courses at several

universities including our own. Our pilot study examined the

question of whether MACKET is a good substitute for manual

grading of test suites written in Racket. These preliminary

results were quite positive, demonstrating a moderate cor-

relation between mutation score and hand-grading score on

one of the two assignments. Our qualitative analysis of the

312

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 23:53:07 UTC from IEEE Xplore. Restrictions apply.

submissions revealed several interesting implications for edu-

cators interested in providing automated feedback on students’

test case quality. Our ongoing work with MACKET includes

evaluating additional mutation operators and deploying the

tool to larger classes to gain more feedback. We have released

MACKET under an open-source license, and we look forward

to collaborating with colleagues at other institutions on its

evaluation [19]. Future work may examine related questions

such as examining the productivity of the mutation operators

we implemented and designing mutation operators based on

real student faults found in student submissions.

ACKNOWLEDGEMENTS

We thank the teaching assistants and lecturers for sharing

course data with us and for providing insights and guidance

while we were processing the assignment data. We thank

Cameron Moy for consulting about the Racket language while

we implemented our tool.

REFERENCES

[1] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, How to
Design Programs: An Introduction to Programming and Computing.
The MIT Press, 2018.

[2] J. Perretta, A. DeOrio, A. Guha, and J. Bell, “On the use of mutation
analysis for evaluating student test suite quality,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 263–275. [Online]. Available:
https://doi.org/10.1145/3533767.3534217

[3] D. Le, M. Amin Alipour, R. Gopinath, and A. Groce, “Mutation testing
of functional programming languages,” Oregon State University, Tech.
Rep., 2014.

[4] D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “Mucheck:
An extensible tool for mutation testing of haskell programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 429–432. [Online]. Available:
https://doi.org/10.1145/2610384.2628052

[5] “Stryker mutator,” 2022. [Online]. Available: https://stryker-mutator.io/

[6] “Pit overview,” 2022. [Online]. Available:
https://pitest.org/quickstart/mutators/

[7] “Stryker supported mutators,” 2022. [Online]. Available: https://stryker-
mutator.io/docs/mutation-testing-elements/supported-mutators/

[8] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
“Pit: A practical mutation testing tool for java (demo),” in Proceedings
of the 25th International Symposium on Software Testing and
Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 449–452. [Online]. Available:
https://doi.org/10.1145/2931037.2948707

[9] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano,
A. García-Domínguez, and J. J. Domínguez-Jiménez, “As-
sessment of class mutation operators for c++ with the
mucpp mutation system,” Information and Software Tech-
nology, vol. 81, pp. 169–184, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584916301161

[10] A. Denisov and S. Pankevich, “Mull it over: Mutation testing based
on llvm,” in 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), April 2018, pp. 25–31.

[11] “Quickchick,” 2023. [Online]. Available:
https://github.com/QuickChick/QuickChick

[12] M. Cavada, A. Col‘o, and A. Momigliano, “Mutantchick: Type-
preserving mutation analysis for coq,” 2020. [Online]. Available:
https://ceur-ws.org/Vol-2710/short2.pdf

[13] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” TSE, vol. 37, no. 5, 2011.

[14] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, pp.
654–665. [Online]. Available: https://doi.org/10.1145/2635868.2635929

[15] B. S. Clegg, P. McMinn, and G. Fraser, “An empirical study to determine
if mutants can effectively simulate students’ programming mistakes to
increase tutors’ confidence in autograding,” in Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1055–1061.
[Online]. Available: https://doi.org/10.1145/3408877.3432411

[16] J. M. Rojas and G. Fraser, “Code defenders: A mutation testing game,”
in 2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2016, pp. 162–167.

[17] P. Delgado-Pérez, L. M. Rose, and I. Medina-Bulo, “Coverage-based
quality metric of mutation operators for test suite improvement,”Soft-
ware Quality Journal, vol. 27, no. 2, pp. 823–859, jun 2019.

[18] R. Just, B. Kurtz, and P. Ammann, “Inferring mutant utility
from program context,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2017. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 284–294. [Online]. Available:
https://doi.org/10.1145/3092703.3092732

[19] B. Zhuang, J. Perretta, A. Guha, and J. Bell, 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7689559

313

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 23:53:07 UTC from IEEE Xplore. Restrictions apply.

