
Human vs. Automated Coding Style Grading in Computing

Education

James Perretta, Westley Weimer, and Andrew DeOrio

1 Abstract

Computer programming courses often evaluate student coding style by hand. Static analysis tools

provide an opportunity to automate this process. In this paper, we explore the effectiveness of

human style graders and general-purpose static analysis tools for evaluating specific style-grading

criteria.

We analyze data from a second-semester programming course at a large research institution with

943 students enrolled. Hired student graders evaluated student code with rubric criteria such as

“Lines are not too long” or “Code is not too deeply nested.” We also ran several static analysis

tools on the same student code to evaluate the same criteria. We then analyzed the correlation

between the number of static analysis warnings and human style grading score for each

criterion.

Our initial investigation reveals that human graders do not reliably provide consistent style

grading scores when compared against each other. We also see that human graders perform

inconsistently on objective style grading criteria when compared against static analysis

inspections used to evaluate those same criteria. While we note that existing, general-purpose

static analysis tools are insufficient to evaluate all of the style criteria from the course, we identify

several objective criteria for which static analysis tools perform more accurately than human

graders. The static analysis inspections for these criteria can be easily implemented for common

programming languages. In conjunction with an automated grading system, these tools can be

used to reduce the effort spent by human graders and provide better, more immediate feedback to

students on the quality of their code.

2 Introduction

Research and experience from industry have demonstrated that code review and following good

coding practices are important parts of writing maintainable software1. Consequently, good

coding style is an important learning goal of computer science courses. This is often achieved by

evaluating student code by hand using a set of style criteria. This process is difficult to scale for

large courses. In particular, having more submissions to grade increases the time it takes for

students to receive feedback on their work. Static analysis tools offer a possible solution to this

problem. Our goal is to determine which style grading criteria can be effectively automated by

existing static analysis tools.

2.1 Code Style

In industry, software companies often have a formal set of coding standards dictating preferred

practices for code style and quality2 3. They may include guidelines for code formatting and

naming conventions in order to provide consistency across projects. They may also specify

features of a particular language that are discouraged or forbidden from use. These conventions

are usually enforced through a combination of static analysis tools and human code review4 5. In

computer science courses, the coding standards used to evaluate student code are likely designed

based on the experience level of students in the course. For example, an introductory

programming course’s coding standards might focus on things like properly indenting source

code and using descriptive variable names.

2.2 Static Analysis Tools for Evaluating Code Style

A significant amount of effort has gone into writing tools that analyze coding style. As early as

the 1990s, computer programming courses used static analysis tools to enforce some simple

coding style rules for students’ Pascal code6,7. Some modern tools are designed to enforce a

specific set of coding standards. For example, cpplint5 was written to enforce Google’s coding

standards, and pycodestyle8 was written to enforce PEP 8, a section of the Python language

standard that describes style conventions9. Similarly, checkstyle10 can be used to enforce coding

standards in Java code. The Clang compiler frontend has helped give rise to other configurable,

extendable tools such as Clang-Tidy11 and OCLint12 that perform various inspections for

C-family languages. Other tools, such as PMD13 and cppcheck14 detect potential bugs and

undesirable coding practices in Java and C++ code, respectively.

2.3 Style Grading

In computer programming courses, the desired qualities for a style grading process differ from

those for code review in industry. Unlike in industry where code review is often a prerequisite for

merging a patch15, students usually are not required to revisit their code from prior programming

projects. This means that students have limited opportunities to respond to any feedback received

after a project is due. Furthermore, the fact that style grading affects students’ course grades

requires additional transparency and precision in the process. Based on the published literature

and our experience, we identify three desirable qualities in a style grading process.

Accuracy: A style grading process should be accurate and free from false positives, otherwise

students will be assigned the wrong grade for an assignment. Researchers across educational

fields have investigated methods of training teachers and graders16 17 as well as protocols for

assigning multiple graders to a single submission in order to improve consistency18 19. These

practices, however, can be difficult to implement in courses where human resources are limited.

With instructors and teaching assistants focused on leading lecture or lab sessions, there are often

fewer hours left for grading than needed for double marking or other such approaches.

Clarity: It should be easy for students and instructors to determine why a particular style grade

was assigned. Instructors must have confidence that students were given the right grade, and

students must be able to learn from the feedback and make improvements on future assignments.

Not all tools support such clarity. For example, prior work by Buse et al. used machine learning

to quickly and accurately assign a “readability” score to a piece of code20 21. Although their

automated model performs more accurately, on average, than humans, the tool provides only a

numerical score. It is not a normative or explanatory model, so it is difficult for users of the tool

to figure out what specific changes they should make to their code to improve it. Unlike

rule-based static analyses, any approach involving machine learning is likely to face similar

issues, as explainability is an ongoing research issue in that field22 23.

Speed: Students benefit from receiving timely feedback on their work, especially if they are able

to address that feedback and resubmit their work. This is an important part of the philosophy

behind using automated grading systems in computer programming courses. Prior work suggests

that giving students frequent, actionable feedback on their work can help them develop good

habits and improve specific skills, such as writing high-quality software tests24 25.

2.4 Contributions

In this paper, we explore the strengths and weaknesses of evaluating student code style manually

using human style graders and automatically using static analysis tools. In particular, we examine

three research questions:

1. Do human graders provide style grading scores consistent with each other?

2. Are human coding style evaluation scores consistent with static analysis tools?

3. Which style grading criteria are more effectively evaluated with existing static analysis

tools and which are more effectively evaluated by human graders?

3 Methods

Our goal in this study is to identify code inspections offered by general-purpose static analysis

tools that consistently provide high-quality feedback about style grading criteria. Hired student

graders evaluated student code according to a predetermined rubric. We also ran static analysis

tools on the same student code to evaluate the same criteria. We analyzed the distributions of style

grading scores awarded by each human grader. We also examined the correlation between the

number of static analysis warnings and the human style grading scores.

3.1 CS2 Course

Our study examines a second-semester computer programming course at a large research

institution with a total of 943 students in one semester. The course contained five programming

projects where students wrote C++ code according to a specification. A typical programming

project consisted of implementing one or more abstract data types (ADTs) according to

specification and writing a command-line program using those ADTs.

Students in the course attended three hours of lecture per week and a two hour lab session each

week. Lab sessions consisted of a short exercise worksheet and a programming activity designed

to supplement material from lecture. Lecture and lab sections in the course were synchronized to

ensure that students learned the same material regardless of which section they attended.

We collected data from one project where the command-line program portion was longer and

more open-ended than on any other project in the course. The instructor solution for this project

was 595 lines of code, while the average length of student solutions was 857 lines of code.

Students were allowed to work alone or with a partner, yielding 621 distinct assignment

submissions. Students submitted their code to an automated grading system, where they received

automated feedback on the correctness of their code up to three times per day. After the project

deadline, student code was evaluated manually by hired student graders. These human graders

were given a predetermined list of criteria with which to evaluate student code. Each human

grader was assigned 42 submissions to grade over a period of 2 weeks.

3.2 Human Style Grading Rubric

We trained our human graders by providing them with written instructions on how to apply style

grading criteria. Our human style grading criteria are intended to address common style errors as

well as programming concepts that appear in certain projects. Each rubric item is evaluated on a

3-value scale with 2 meaning “Always”, 1 meaning “Usually”, and 0 meaning “Almost never”.

These criteria represent common style evaluation guidelines in introductory programming

courses.

The general programming practice criteria, common to all assignments, are as follows:

• Helper functions are used where appropriate: Human style graders were instructed to

deduct points if students wrote excessively long functions rather than splitting them up into

smaller ones. When a student’s command line program consisted entirely of one long

function, human style graders were instructed to give zero points for this criterion.

• Lines are not too long: Human style graders were instructed to use 80 characters as a soft

limit and to not deduct points if a line of code exceeded this limit by only a few characters.

• Functions and variables have descriptive names.

• Effective, consistent, and readable line indentation is used.

• Code is not too deeply nested in loops and conditionals.

Some examples of project-specific criteria include:

• Explicit use of the this keyword is avoided.

• The Big 3 C++ special member functions (copy constructor, assignment operator overload,

and destructor) are only implemented when needed.

• Interfaces are respected in C-style ADTs.

3.3 Static Analysis Tools and Data Collection

We investigated several existing, open-source static analysis tools and selected ones that offered

inspections that were closely related to one or more items in our human style grading rubric. We

required that tools support C++ code, provide specific inspections with configurable thresholds,

and be free to use. The inspections needed to be concerned with code style rather than program

correctness. The output of the inspections also needed to be easy to parse to count the number of

warnings. We chose CPD (part of the PMD tools) and three inspections offered by OCLint. We

also considered, but did not select, Clang-Tidy11, cppcheck14, duplo26, sonarsource27, and

cpplint5. Here we describe the inspections that we used to evaluate student code style.

OCLint LongLine: This inspection reports each line of code longer than a specified threshold.

Based on the instructions in our rubric, we chose 90 characters as the threshold.

OCLint DeepNestedBlock: This inspection reports each block nested deeper than a specified

threshold. We chose a threshold of 4 because the instructor solution only exceeded this level of

nesting once.

OCLint HighNcssMethod: This inspection reports each function with more non-commenting

source statements than a specified threshold. We chose a threshold of 30 statements and scaled

the warning count so that warnings for longer functions had a higher weight.

CPD: Copy Paste Detector: This inspection reports exact sequences of duplicated code longer

than a threshold of 100 tokens. We recorded the number of duplicated lines for each

submission.

4 Results

We analyze data from 621 student code bases. We collected style grading scores assigned to each

submission by a human grader and counted the number of warnings from automated static

analysis tools. We compare these two sets of data.

4.1 Consistency Among Human Graders

We analyzed the distributions of scores assigned by 15 individual human graders to determine

how consistently the graders perform when compared against each other. Each human grader was

assigned a disjoint group of 42 submissions to grade. Using the Kruskal-Wallis test for one-way

ANOVA, we see that 10 of the 15 human graders assigned scores consistently with each other,

while the remaining 5 assigned scores inconsistently with those 10 graders.

Since each assignment was graded by only one human grader, we will first show that the

populations of student submissions assigned to each grader are comparable. Our independent

variable is the human grader who evaluated a group of submissions for style. Our dependent

variable is the code correctness score (determined by automated test cases) of students’

submissions. We used the Kruskal-Wallis test to compare the populations of student submissions.

We fail to see a statistically significant difference between the median project correctness scores

of the groups of submissions (p=0.23). Since all the groups of submissions had comparable code

correctness scores, we expect these groups to also have comparable code style scores.

We now compare the style grading scores assigned by each human grader. Table 1 contains

descriptive statistics of the scores assigned by each grader. Our independent variable is the human

grader who evaluated a group of submissions for style. Our dependent variable is the style

grading score assigned to the students’ submissions. We used the Kruskal-Wallis test to compare

the populations of student submissions assigned to each grader. We do not see a statistically

significant difference between the median scores of graders 1-3 and 6-12 in Table 1 (p=0.06). In

the remaining 5 groups of submissions (graders 4, 5, 13, 14, and 15 in Table 1), we see a

statistically significant difference between the median style grading scores of each of those groups

Human Grader #

1∗ 2∗ 3∗ 4† 5† 6∗ 7∗ 8∗ 9∗ 10∗ 11∗ 12∗ 13† 14† 15‡

Mean 20 20 20 20 19 20 20 21 20 20 20 21 20 20 17

Stdev 2.1 1.7 1.9 1.8 2.5 2.0 1.7 1.8 2.7 2.1 2.7 1.5 1.8 1.9 4.7

Median 21 20 20 20 20 21 21 21 22 21 21 21 20 19 18

Table 1: Descriptive statistics of scores awarded by human graders. Scores were out of 22

points. Graders marked with the same symbol (∗, †, or ‡) indicates that we do not see a

statistically significant difference between their medians using the Kruskal-Wallis test with

p-values greater than 0.05.

and the 10 aforementioned groups of submissions, with p-values less than 0.05. We discuss the

implications of this human grader inconsistency in Section 5.1.

4.2 Static Analysis Output vs. Human Style Grading Scores

We now examine correlations between the number of static analysis warnings and the human

style grading score for each rubric item. Since a high warning count indicates more style criterion

violations, we expect to see a negative correlation between warnings and scores. In Table 2 we

see a weak negative correlation between the number of warnings emitted by OCLint’s LongLine

inspection and the scores for the “Line length” rubric item. We also see a weak negative

correlation between the number of warnings emitted by OCLint’s DeepNestedBlock inspection

and the scores for the “Nesting” rubric item. When comparing the “Helper functions” score

against the number of warnings emitted by OCLint’s HighNcssMethod inspection or the number

of lines of duplicated code reported by CPD, however, we see almost no correlation.

Style Rubric Static Analysis Pearson r

Line Length OCLint LongLine -0.22

Nesting OCLint DeepNestedBlock -0.21

Helper Functions OCLint HighNcssMethod -0.07

Helper Functions Copy/Paste Detector -0.12

Table 2: Pearson correlations between human style grading scores and number of static

analysis warnings.

4.2.1 Distributions of Static Analysis Warnings

Next, we examine the distributions of the number of static analysis warnings emitted for each

inspection, stratified by the human style grading score awarded. We expect a statistically

significant difference between each of these strata, e.g. the number of warnings for submissions

that received a 0 or a 1 should be different from that of submissions that received a 1 or a 2.

We consider each of the four analyses in turn, starting with the CPD tool and the “Helper

functions” rubric. In Figure 1, we see a statistically significant difference between the mean

number of duplicated lines of code reported by CPD for students who received a “Helper

functions” style score of 1 or 2. Students who received a 1 had on average about 29 more lines of

duplicated code than students who received a 2. We fail to see a statistically significant difference

for students who received a 0 or a 1. We see that only about 10% of students who received a 0 and

about 8% of students who received a 1 had no detected duplicated lines of code. About 13% of

students who received a 2 had at least 100 duplicated lines of code. We also note the presence of

several outliers who received a 2 despite having 385, 590, and 746 lines of duplicated code,

respectively.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Num duplicated lines

0
3
6
9

12
15
18
21
24

%
 o
f s
tu
de
nt
s

Duplicated Lines for "Helper functions" Style Score 0

count 50.00
mean 70.38
std 65.46
min 0.00
25% 23.00
50% 49.00
75% 114.00
max 289.00

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Num duplicated lines

0
3
6
9

12
15
18
21
24

%
 o
f s
tu
de
nt
s

Duplicated Lines for "Helper functions" Style Score 1

count 89.00
mean 75.55
std 90.09
min 0.00
25% 22.00
50% 48.00
75% 94.00
max 615.00

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Num duplicated lines

0
3
6
9

12
15
18
21
24

%
 o
f s
tu
de
nt
s

Duplicated Lines for "Helper functions" Style Score 2

count 492.00
mean 49.75
std 66.84
min 0.00
25% 13.00
50% 31.00
75% 66.25
max 746.00

Scores U p-value

0 vs 1 2203.5 0.463268

1 vs 2 17083.5 0.000463

0 vs 2 9502.0 0.003882

Figure 1: Distributions and ANOVA for number of duplicated lines of code reported by

CPD, stratified by “Helper functions” style grading score. We see a statistically significant

difference in the number of lines of duplicated code between students who received a 1 or a 2, but

not between students who received a 0 or a 1.

Similarly, we see a statistically significant difference between the mean number of OCLint

LongLine warnings for students who received a “Line length” style score of 1 or 2 (p=9.7e-10,

U=20245). Students who received a 1 had on average about 7 more warnings than students who

received a 2. We do not see a statistically significant difference between the mean number of

warnings for students who received a score of 0 or 1 (p=0.34, U=2565). We also see that about

15% of students who received a 1 and about 23% of students who received a 0 had no LongLine

warnings. Additionally, about 27% of students who received a 2 had 10 or more warnings.

We also see a statistically significant difference between the mean number of OCLint

DeepNestedBlock warnings for students who received a “Nesting” style score of 1 or 2 (p=0.008,

U=14377). Students who received a 1 had on average one more warning than students who

received a 2. We do not see a statistically significant difference between the mean number of

warnings for students with a “Nesting” score of 0 or 1 (p=0.4, U=232). We also fail to see a

statistically significant difference between the mean number of warnings for students who

received a “Nesting” style score of 0 or 2 (p=0.19, U=1907). We also note that 56% of students

who received a 1 and about 63% of students who received a 0 had no warnings.

Finally, we also see a statistically significant difference between the mean number of OCLint

HighNcssMethod warnings for students who received a “Helper functions” score of 1 or 2

(p=0.04, U=19334). Students who received a 1 had on average about one more warning than

students who received a 2. We fail to see a statistically significant difference between the mean

number of warnings for students who received a score of 0 or 1 (p=0.2, U=2038). We also do not

see a significant difference between the mean number of warnings for students who received a 0

or a 2 (p=0.42, U=12055). We see that 36% of students who received a 0 and 27% of students

who received a 1 had no warnings in this category, while about 7% of students who received a 2

had 10 or more warnings.

5 Discussion

In our initial investigation, we intended to use the scores assigned by human graders as a ground

truth for evaluating the performance of static analysis tools. After analyzing the scores assigned

by those graders, we realized that our human graders did not perform consistently enough with

each other to function as ground truth. Furthermore, we see trends when comparing human style

grading scores to static analysis output indicating that our human graders failed to assign the

correct score in many clear-cut cases. This is particularly troubling because resource constraints

preclude multiple graders from evaluating each human submission.

5.1 Human Graders Compared Against Each Other

Our analysis of variance revealed that while the median scores assigned by 10 of the graders were

consistent, the other 5 graders had a statistically significant difference between their median

scores and that of other 10. We also see that the standard deviations of the scores assigned by

individual graders range from 1.5 to 4.7. Grader 15 appears to have deducted more points overall

than the other graders, with a mean score of 17/22 and median score of 18/22 points. The 10

graders that performed consistently with each other tended to not deduct many points. Among

these graders, the lowest median score we see is 20/22 points. We looked for evidence of fatigue

or familiarity effects in our graders, but we did not see a statistically significant relationship

between the order in which a submission was graded and the score assigned to that submission.

Inconsistency in human annotators for programming criteria has been reported in the literature

(e.g., Figure 1 of the Buse et al. study20); the variance in these graders is the rule rather than the

exception16,18.

5.2 Human Graders Compared Against Static Analysis

The static analysis inspections we chose all have clear relationships with our style grading

criteria. For example, students with fewer lines of code exceeding the length threshold should

receive more points on the “Line length” criterion than students with more lines of code

exceeding the threshold. Similarly, the presence of duplicated code or functions that are too long

indicates that the code should be refactored to use helper functions that reduce duplication or

divide long tasks into smaller sub-tasks. Our qualitative and quantitative analyses suggest that

static analyses provide a much more accurate and consistent evaluation of these criteria than

human graders.

In general, we see a weak, if any, correlation between the number of static analysis warnings and

the score assigned by human graders for the corresponding style criterion. We also tend to see a

significant difference between the mean number of static analysis warnings for students who

received a 1 or a 2 for a particular criterion, but not between students who received a 0 or a 1.

This suggests that although they may be able to distinguish between students who made no

mistakes and some mistakes, human graders do not make a consistent distinction between

students who made some mistakes and those who made many mistakes.

In other cases, we see no statistically significant difference between the mean number of static

analysis warnings for students who received a 0 or a 2 for the corresponding style criterion. That

is, many submissions were either unfairly penalized by humans or should have been penalized by

humans but were not. In some cases, we see that more than 50% of submissions (about 40

students in this case) that had no static analysis warnings were still given a score of 0 by humans.

Similarly we see cases where as many as 13% (about 64 students) or 27% (about 123 students) of

submissions that received a score of 2 had a non-negligible number of warnings.

Furthermore, we see some cases where submissions with an egregious number of static analysis

warnings still received full credit for the corresponding style criteria. For example, we see one

student with 746 lines of duplicated code who received full points for the “Helper functions”

criterion. Simply seeing that one of the students’ source files was over 1200 lines long should

have been an immediate sign that the student did not effectively use helper functions.

Overall, it appears that static analysis tools perform more consistently and accurately than

humans when a given style criterion can be evaluated with simple rules. Since the threshold for

these inspections is configurable, there is a very low risk of false positives. Unlike a human grader

who could accidentally miss violations of a style guideline, these static analysis inspections

consistently analyze the entire source code.

Additionally, we note that while human graders had 2 weeks to render their feedback, the static

analysis tools we investigated provide feedback in seconds or less.

5.3 Static Analysis Limitations

Some of the criteria in our style grading rubric are not amenable to static analysis by the tools we

investigated. Many of the project-specific criteria are too specific to justify including in

general-purpose static analysis tools. While inspections for some of these criteria can be

implemented using abstract syntax tree analysis, instructors would have to decide whether to

dedicate human resources towards doing so.

Other criteria are too complicated to be evaluated with simple metrics like those provided by the

tools we investigated. For example, OCLint provides an inspection that emits a warning when it

sees a variable name shorter than a given threshold (3 characters by default). Although this

inspection could correctly detect some poorly named variables, there are notable cases where the

tool would produce false positives or false negatives. Some single-letter variable names are

established by convention and considered acceptable, such as i for loops and e for caught

exceptions. On the other hand, being longer does not mean that a variable is named well, as in this

student code with poorly-named variables that all exceed 3 characters:

void set_players(string arg1, string arg2, string arg3,

string arg4, string arg5, string arg6,

string arg7, string arg8) {...}

These names fail to convey meaningful information about values they store. While machine

learning may be able to provide more sophisticated analyses, the explainability issues that arise

from such approaches make them difficult to use in a grading setting.

5.4 Limitations of the Study

Although our dataset involved a large number of hired graders, they were undergraduate students

who received a limited amount of training in how to apply our rubric. Since we analyzed

historical data, we did not select or train the graders ourselves. Student submissions contained

identifiers, and thus human grader scores may have been affected by grader bias. Each submission

was also only evaluated by one human, which limits the conclusions we can draw about inter-rater

reliability. However, the scale and approach are indicative of large introductory courses.

6 Conclusions and Discussion

We conclude with some recommendations for how to more effectively use human style graders

and static analysis tools to evaluate student code style.

First, style criteria that can be evaluated using simple abstract syntax tree rules should preferably

be evaluated using a static analysis tool. In many cases, a preexisting tool can be found to perform

common inspections. In other cases (for example, we did not find a static analysis tool to evaluate

block indentation in C++, only automatic code formatting tools), such a tool can likely be written

using an existing static analysis framework.

Second, unless hired graders can be thoroughly trained, prefer evaluating style criteria on a binary

scale rather than a larger multi-value scale. Since we observed that our human graders had trouble

distinguishing between code with some errors and code with many errors, using a binary scale

may help improve consistency. Additionally, a binary scale is more amenable to grading using a

static analysis tool. Especially if students are able to run the static analysis tools on their own

code before submitting it, style points can be fairly deducted if any warnings are present.

Third, if static analysis tools are used to evaluate simple aspects of student code style, a few

well-trained human graders can focus instead on evaluating other aspects, such as variable and

function names, that static analysis tools may not yet evaluate clearly and accurately.

Fourth, any static analysis tools used to evaluate student code style should be provided to students

(or included in feedback from an automated grading system) so that they can run the tools

themselves and address the warnings emitted. Prior work suggests that this approach may

encourage students to fix their style mistakes earlier in the development process and help them

develop better coding style habits.

Ultimately, we compared scores assigned by human style graders to warnings produced by static

analysis tools. We found that several of our style grading criteria can be evaluated more quickly

and consistently with static analyses than by human graders. Static analysis inspections using

simple, abstract syntax tree-based rules can be accurate, clear, and fast for style grading.

References

[1] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The impact of code review coverage

and code review participation on software quality: A case study of the Qt, VTK, and ITK projects. Proceedings

of the 11th Working Conference on Mining Software Repositories, pages 192–201, 2014.

[2] Google. Google C++ style guide, . URL

https://google.github.io/styleguide/cppguide.html.

[3] Mozilla. Coding style. URL

https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style.

[4] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern code review.

Proceedings of the 2013 International Conference on Software Engineering, pages 712–721, 2013.

[5] Google. cpplint, . URL

https://github.com/cpplint/cpplint#cpplint---static-code-checker-for-c.

[6] Tom Schorch. CAP: An automated self-assessment tool to check Pascal programs for syntax, logic and style

errors. SIGCSE Bulletin, 27:169–172, 1995.

[7] Al Lake and Curtis Cook. Style: An automated program style analyzer for pascal. SIGCSE Bulletin, 22:29–33,

1990.

[8] Johann C. Rocholl. pycodestyle. URL https://pypi.org/project/pycodestyle/.

[9] Guido van Rossum, Barry Warsay, and Nick Coghlan. PEP 8: Style guide for Python code, 2001. URL

https://www.python.org/dev/peps/pep-0008/.

[10] Roman Ivanov. checkstyle. URL http://checkstyle.sourceforge.net/.

[11] Clang Team. Extra Clang tools 6 documentation: Clang-Tidy, 2017. URL

http://clang.llvm.org/extra/clang-tidy/.

[12] OCLint. Oclint, 2017. URL http://oclint.org/.

[13] pmd. URL https://pmd.github.io/.

[14] cppcheck. URL http://cppcheck.sourceforge.net/.

https://google.github.io/styleguide/cppguide.html
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://github.com/cpplint/cpplint#cpplint---static-code-checker-for-c
https://pypi.org/project/pycodestyle/
https://www.python.org/dev/peps/pep-0008/
http://checkstyle.sourceforge.net/
http://clang.llvm.org/extra/clang-tidy/
http://oclint.org/
https://pmd.github.io/
http://cppcheck.sourceforge.net/

[15] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. Modern code review:

A case study at Google. In Proceedings of the 40th International Conference on Software Engineering:

Software Engineering in Practice, pages 181–190, 2018.

[16] Stephen D. Luft. How reliable is daily grading? the inter-rater reliability of daily grades assigned by trained

teachers. Japanese Language and Literature, 51:1–29, 2017.

[17] Victoria Crisp. Towards a model of the judgement processes involved in examination marking. Oxford Review

of Education, 36:1–21, 2010.

[18] Henry I. Braun. Understanding scoring reliability: Experiments in calibrating essay readers. Journal of

Educational Statistics, 36:1–18, 1988.

[19] Val Brooks. Double marking revisited. British Journal of Educational Studies, 52:29–46, 2004.

[20] Raymond P.L. Buse and Westley R. Weimer. A metric for software readability. ISSTA ’08 Proceedings of the

2008 international symposium on Software testing and analysis, pages 121–130, 2008.

[21] Raymond P.L. Buse and Westley R. Weimer. Learning a metric for code readability. IEEE Transactions on

Software Engineering, 36:546 – 558, 2010.

[22] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of machine learning.

ICML Workshop on Human Interpretability in Machine Learning, 2016.

[23] A. Meka, M. Maximov, M. Zollhofer, A. Chatterjee, H. Seidel, C. Richardt, and C. Theobalt. Lime: Live

intrinsic material estimation. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

6315–6324, 2018.

[24] Stephen H. Edwards. Improving student performance by evaluating how well students test their own programs.

Journal on Educational Resources in Computing, 3(3), 2003.

[25] James Perretta and Andrew DeOrio. Teaching software testing with automated feedback. In 2018 ASEE Annual

Conference & Exposition, 2018.

[26] duplo — C/C++/Java duplicate source code block finder. URL http://duplo.sourceforge.net/.

[27] sonarsource. URL

https://www.sonarsource.com/products/codeanalyzers/sonarcfamilyforcpp.html.

http://duplo.sourceforge.net/
https://www.sonarsource.com/products/codeanalyzers/sonarcfamilyforcpp.html

	1 Abstract
	2 Introduction
	2.1 Code Style
	2.2 Static Analysis Tools for Evaluating Code Style
	2.3 Style Grading
	2.4 Contributions

	3 Methods
	3.1 CS2 Course
	3.2 Human Style Grading Rubric
	3.3 Static Analysis Tools and Data Collection

	4 Results
	4.1 Consistency Among Human Graders
	4.2 Static Analysis Output vs. Human Style Grading Scores
	4.2.1 Distributions of Static Analysis Warnings

	5 Discussion
	5.1 Human Graders Compared Against Each Other
	5.2 Human Graders Compared Against Static Analysis
	5.3 Static Analysis Limitations
	5.4 Limitations of the Study

	6 Conclusions and Discussion

