
Teaching Software Testing with Automated Feedback

James Perretta and Andrew DeOrio

jameslp@umich.edu, awdeorio@umich.edu

Department of Electrical Engineering and Computer Science

University of Michigan

1 Abstract

Computer science and software engineering courses commonly use automated grading systems to

evaluate student programming assignments. These systems provide various types of feedback,

such as whether student code passes instructor test cases. The literature contains little data on the

association between feedback policies and student learning. This work analyzes the association

between different types of feedback and student learning, specifically on the topic of software

testing.

Our study examines a second-semester computer programming course with a total of 1,556

students over two semesters. The course contained five programming projects where students

wrote code according to a specification as well as test cases for their code. Students submitted

their code and test cases to an automated grading system. These test cases were evaluated by

running them against intentionally buggy instructor solutions. The first semester comprised the

control group, while the second semester comprised the experiment group. The two groups

received different kinds of feedback on their test cases. The control group was shown whether

their tests were free of false positives. In addition to the same feedback as the control group, the

experiment group was shown how many intentionally buggy instructor solutions their tests

exposed.

Our results measured the quality of student test cases for the control and experiment groups. After

students in the experiment group completed two projects with additional feedback on their test

cases, they completed a final project without the additional feedback. Despite not receiving

additional feedback, their test cases were of higher quality, exposing on average 5% more buggy

solutions than students from the control group. We found this difference to be statistically

significant after controlling for GPA and whether students worked alone or with a partner.

2 Introduction

Testing is an integral part of software development that helps ensure that software behaves

according to its requirements. We will discuss testing practices used in software engineering and



how they relate to teaching software testing. We then introduce the theoretical and conceptual

frameworks that form the foundation for our study.

2.1 Software Testing

Testing is a critical part of software development. By some estimates, 41% of information

technology budgets in North America are spent on quality assurance and testing.1 Software

testing helps ensure the correctness of the software being developed, and there are several test

suite quality metrics used in industry to ensure that a test suite properly verifies the behavior of

the software it tests.

One widely-used test suite quality metric is code coverage. The goal of a code coverage metric is

to determine the percentage of a program’s source code executed by a test suite. Coverage tools

may be configured to provide statement coverage or branch coverage. Statement coverage

measures the percentage of executed statements, while branch coverage measures the percentage

of branches taken, such as those in conditionals and loops. Test suites with high coverage

measurements expose important errors that would go undetected otherwise.2 Furthermore, code

coverage tools are relatively inexpensive to use, and open source code coverage tools exist for

commonly used programming languages such as C++, Java, and Python.3,4,5

Another way to measure test suite quality is mutation testing. A shortcoming of code coverage is

that it does not consider the pre- and post-conditions of functions verified by a test suite. For

example, consider a function that divides two numbers and should throw an exception when the

denominator is zero. If the function fails to check for division by zero, a test suite without a test

case that passes in zero as the denominator could still achieve 100% coverage, even though the

test suite is incomplete. Mutation testing attempts to address this shortcoming. The goal of

mutation testing is to evaluate a test suite’s ability to expose errors in a program.6 The process of

mutation testing begins with making small modifications to a program’s syntax tree, usually with

an automated tool. Each modified version of the syntax tree is saved as a “mutant.” Each mutant

is then evaluated by the original program’s test suite. If any of the tests fail, the mutant is

considered “killed.”6 If two test suites for the same program are run against a set of mutants, the

test suite that kills more mutants is a higher-quality test suite.

2.2 Teaching Software Testing

Despite the focus on testing in industry, researchers have observed that relatively little time in CS

courses is devoted to teaching software testing.7,8,9 Educators have a variety of approaches to

teaching software testing available to them, including automated grading systems to provide

feedback that students can use to improve the quality of their test cases.

Several approaches to teaching software testing have been applied with some success, such as

test-driven development10,11 or Jones’s SPRAE principles.8 Test-driven development emphasizes

a short, frequently-repeated cycle of writing and running test cases while making small additions

and changes to the code being developed. SPRAE focuses on a set of essential principles to

testing and quality assurance of software: specification, where explicit behaviors must be



specified for testing to be possible; premeditation, where testing requires a systematic design

process; repeatability, where the results of the testing process must be independently

reproducible; accountability, where others must be able to review the testing process; and

economy, where testing should be resource-efficient.8

In order to accommodate high enrollment in CS courses, instructors may use automated grading

systems to evaluate student code and provide feedback to help students fix their mistakes.12,13

One common approach is for automated grading systems to evaluate student code by running it

against an instructor-written test suite and verifying that student code produces the correct

output.13 In recent years, there has been some research into using PL techniques, such as

symbolic execution and program repair, to provide automated feedback to students about specific

programming errors they made.14

Similarly, there are several approaches for automatically evaluating student test cases. These

approaches overlap with the test suite quality metrics discussed earlier. For example, Edwards’s

approach to automatically evaluating student tests centers around code coverage metrics.9 Since

high coverage does not guarantee high test case quality,10 some instructors turn to a form of

mutation testing: student tests are run against a series of intentionally buggy instructor solutions

and evaluated based on how many of those buggy solutions are exposed by the tests.13 Rather

than automatically generating these buggy solutions, instructors may choose to write them by

hand. This method requires more effort from the instructor, but gives greater control over the bugs

student tests are evaluated against.

When providing an automated feedback and grading mechanism to students, instructors must

decide what feedback students should receive from the automated grading system. Should test

case feedback be immediate, or should it be withheld until after the project deadline? There is

some evidence to suggest that students are more likely to write test cases early in the development

cycle when they are given a proper incentive, such as automated feedback.10

2.3 Theoretical Framework

The theories of active learning and constructivism are central to teaching software testing with

automated feedback. Bonwell and Eison define active learning strategies as “instructional

activities involving students in doing things and thinking about what they are doing.”15 Although

active learning literature generally focuses on student engagement in the classroom,16 students

interacting with an automated feedback tool, implementing a piece of software, receiving

feedback on their work, and making changes to it shares many of the same goals as active

learning techniques. Similarly, the theory of constructivism emphasizes learning through practice

rather than passively receiving information. Automated feedback systems can give students

immediate feedback on their work, which helps students discover obstacles and learn how to

overcome them while practicing writing software. Our study is concerned with how to improve

the active learning processes that are common in teaching software engineering.

Our conceptual framework centers around common practices and philosophies of providing

automated feedback in programming assignments. As enrollment numbers increase, CS courses

have increased their use of automated grading of programming assignments. Several common



ways of evaluating student test cases have emerged as a result of this shift to automated grading.

Instructors check for false positives, use code coverage metrics, and use mutation testing to

evaluate student tests for true positives. These practices are well-established due to their use in

industry and CS courses. The challenge for instructors is to decide what kind of feedback to show

students after evaluating their tests.

The amount of time dedicated to teaching software testing in CS courses is small compared to the

amount of time devoted to testing in real-world software engineering. While automated feedback

provides a possible way to bridge this gap, we lack evidence-based best practices. The goal of our

study is to collect data on the effects of two concrete types of automated feedback on student

learning of software testing.

Even with more classroom time devoted to teaching software testing, testing is a skill that

requires a lot of practice in order to become proficient. By improving our understanding of types

of automated feedback, we can help CS courses better utilize automated feedback in order to

improve students’ software testing skills over the course of their CS curriculum.

2.4 Contributions

In this paper, we evaluate the effectiveness of different types of automated grading feedback on

student test case quality. In particular, we examine two research questions:

1. Does automated feedback improve students’ ability to write high-quality test cases?

2. What type of automated feedback best encourages student learning of software testing?

3 Methods

Our goal in this study is to measure the effect of automated feedback on student test case quality

and student learning of software testing. The participants in this study were enrolled in a

second-semester computer programming course over two semesters. We conducted a controlled

experiment in which the control and experiment groups received different automated feedback on

their software test cases. Our independent variables are the type of feedback students received and

whether students worked alone or in a partnership. We also controlled for GPA, normalized to 1.

GPA for a partnership was computed as the mean of the two students’ GPAs. Our dependent

variables are the quality of student test cases measured as a percentage of instructor buggy

solutions exposed by the student test cases. We also measure student code correctness as the

percentage of instructor-written test cases passed.

3.1 CS2 Course

Our study examines a second-semester computer programming course at a large research

institution with a total of 1,556 students over two semesters. The course contained five

programming projects where students wrote code and test cases according to a specification. A



typical programming project contained the following components: implementing one or more

abstract data types (ADTs) according to specification, writing test cases for those ADTs, and

writing a command-line program using those ADTs. Instructor project solutions had an average

length of 380 lines of code (excluding test cases). Students submitted their code for these

components to an automated grading system. Students received automated feedback on their code

and test cases on up to three submissions per day during a project. Partnerships collectively

received feedback on their tests the same number of times as those working alone.

Students in the course attended three hours of lecture per week and a two hour lab session each

week. Lab sessions consisted of a short exercise worksheet and a programming activity designed

to supplement material from lecture. Lecture and lab sections in the course were synchronized to

ensure that students learned the same material regardless of which section they attended. Students

were evaluated using two exams: a midterm and final exam. The grading rubric used for the

course was as follows:

Lab exercises 5%

Programming projects 40%

Midterm exam 25%

Final exam 29%

Participation in course surveys, etc. 1%

Student ADT implementations were graded using an instructor-written test suite. Students

received feedback on a few publicly-available instructor tests. Most instructor tests were hidden

until after the project deadline.

Student test cases were evaluated using intentionally buggy instructor solutions. First, each

student-provided test case was compiled and run against a correct instructor solution. Test cases

that incorrectly reported an error on the correct instructor solution (a false positive) were marked

as invalid and discarded. Then, each valid (free of false positives) test case was run against a

series of intentionally buggy instructor solutions. If at least one valid student test case reported an

error for a buggy instructor solution, that buggy solution was marked as exposed. Students were

awarded points based on the number of buggy instructor solutions their tests exposed.

The buggy instructor solutions used in our study were designed to mimic common logic errors

students might make in their programming projects. In Figure 1, we give an example of an

instructor buggy solution. The philosophy of this approach is based on two hypotheses proposed

by mutation testing. First, the Competent Programmer Hypothesis states that the mistakes

programmers tend to make are relatively small and therefore not significantly different from the

correct version.6 Second, the Coupling Effect states that if a test suite is able to expose bugs that

are caused by small mistakes, that test suite should also expose bugs caused by large

mistakes.6



// CORRECT implementation.

template <typename T>

void List<T>::push_back(

const T &datum) {

Node *np = new Node;

if (empty()) {

np->prev = 0;

first = np;

} else {

np->prev = last;

last->next = np;

}

np->next = 0;

np->datum = datum;

last = np;

++num_nodes;

}

// BUGGY implementation: Fails

// to set some pointers

// correctly if the list is

// empty.

template <typename T>

void List<T>::push_back(

const T &datum) {

Node *np = new Node;

np->prev = last;

last->next = np;

np->next = 0;

np->datum = datum;

last = np;

++num_nodes;

}

Figure 1: An instructor buggy solution containing an error in a linked list function. The code

on the left is a correct implementation and the code on the right is a buggy implementation.

3.2 Control and Experiment Groups

The first semester comprised the control group, while the second semester comprised the

experiment group. Both groups received the same lecture material and lab curriculum on software

testing. The two groups received different kinds of feedback on their test cases. Students in the

control group received the same type of feedback on all projects. This feedback, shown in Figure

2, included only whether student test cases passed when run against a correct instructor solution

(free of false positives).

Figure 2: Automated test case feedback for the control group. This feedback indicates which

student test cases produced false positives, if any.

Students in the experiment group received additional feedback on their test cases on Projects 3

and 4. In addition to all of the same feedback that the control group received, the experiment

group was shown the number of buggy instructor solutions their test cases exposed (true



positives). This feedback is shown in Figure 3. On Project 5, the experiment group received the

same feedback as the control group (whether their tests were free of false positives).

Figure 3: Automated test case feedback for the experiment group, which also received the

same feedback as the control group, shown in Figure 2.

3.3 Data Collection and Variables

We measured student learning in two ways: the quality of student solution code, and the quality

of student test case code. We collected the percentage of buggy solutions that student test cases

exposed as a measure of the quality of student test cases. We also collected student scores on the

instructor-written ADT tests as a measure of solution code quality. In our statistical analysis, we

analyze the distributions of these datasets using analysis of variance.

We consider the following independent variables in our analysis:

• Test case feedback type (control and experiment groups).

• Partnership status (whether students worked alone or in a partnership).

• Student GPA, normalized to 1. GPA for a partnership was computed as the mean of both

students’ GPAs.

We measure these dependent variables:

• Student test case quality, measured as the percentage of instructor buggy solutions that

student tests exposed.

• Student solution quality, measured as the score that student solution code received on the

instructor test suite.



4 Results

We examine the quality of student test cases on three projects, both in the experiment and control

groups. We first analyze the association between test case feedback and test case quality. Then,

we analyze the relationship between partnership status and test case quality.

Our independent variables are the type of feedback students received (control and experiment

groups) and whether students worked alone or with a partner. We control for GPA in our analysis.

Our dependent variables are test case quality on three projects, measured as the percentage of

instructor-written buggy solutions that were exposed by student test cases.

4.1 Test Case Feedback and Test Case Quality

In our first experiment, we examine the relationship between the type of feedback students

received and test case quality. The control and experiment groups received different feedback on

Projects 3 and 4. On Project 5, both groups received the same feedback. Our independent variable

is test case feedback. We control for GPA and partnership status.

For Projects 3 and 4, the control group received feedback on whether their tests were free of false

positives. The experiment group received additional feedback on the percentage of buggy

solutions their test cases exposed (true positives). We see several statistically significant

associations with test case quality: type of feedback students received, GPA, and partnership

status. We discuss this in more detail in section 5.1. In Figure 4 and Table 1, we see that the mean

percentage of bugs exposed on Project 3 by the control group was 62%, whereas the mean for the

experiment group was 74% of buggy solutions, a difference of 12%. We also see that the mean

percentage of buggy solutions exposed in Project 4 by the control group was 70%, while the mean

for the experiment group was 83%, a difference of 13%.

For Project 5, the control and experiment groups received the same feedback. Both groups

received feedback on whether their tests were free of false positives. We see several statistically

significant associations with test case quality: the type of feedback students received, GPA, and

partnership status. We discuss this in more detail in section 5.1. In Figure 4 and Table 1, we see

that the mean percentage of bugs exposed by the control group was 64%, whereas the the mean

percentage of bugs exposed by the experiment group was 69%, a difference of 5%.

Test Quality Summary for Test Case Feedback

Project 3 Project 4 Project 5

Control Exp Control Exp Control Exp

N 433 631 428 625 406 593

Mean 62% 74% 70% 83% 64% 69%

Stdev 29% 29% 22% 20% 21% 23%

Table 1: Summary of student test case quality for control and experiment groups. Compared

to the control group, the experiment group mean test quality was 12% higher on Project 3, 13%

higher on Project 4, and 5% higher on Project 5.



Control Experiment
 

0
10
20
30
40
50
60
70
80
90

100
 

%
 B

ug
s E

xp
os

ed

Project 3

Control Experiment
 

 

Project 4

Control Experiment
 

 

Project 5

Figure 4: Student test case quality for control and experiment groups. Test quality is shown

on the Y-axis. The X-axis indicates the control or experiment group. The triangle indicates the

mean.

Project 3 Project 4 Project 5

df Sum Sq. F PR(>F) df Sum Sq. F PR(>F) df Sum Sq. F PR(>F)

Group † ∗ ‡ 1 2.2 40.95 2.34e-10 1 3.43 114.92 1.64e-25 1 0.46 12.04 5.44e-04

Partner † ∗ ‡ 1 3.03 56.32 1.31e-13 1 1.59 53.38 5.45e-13 1 1.24 32.29 1.75e-08

Group x Partner ∗ 1 0.01 0.11 7.39e-01 1 0.27 8.97 2.81e-03 1 0.14 3.6 5.82e-02

GPA † ∗ ‡ 1 25.91 481.46 3.19e-88 1 11.76 394.25 1.08e-74 1 9.66 251.18 1.36e-50

GPA x Group 1 0.02 0.34 5.60e-01 1 0.0 0.12 7.26e-01 1 0.04 1.02 3.14e-01

GPA x Partner ∗ 1 0.0 0.0 9.63e-01 1 0.15 4.9 2.71e-02 1 0.0 0.02 8.88e-01

GPA x Group x Partner 1 0.0 0.07 7.87e-01 1 0.07 2.4 1.21e-01 1 0.06 1.56 2.11e-01

Residual 1056.0 56.83 1045.0 31.17 991.0 38.12

Table 2: ANOVA for student test case quality. The independent variables were control or

experiment group, partnership status, and GPA. The dependent variables were test case quality

scores on three projects. Statistically significant associations are indicated for project 3†, project

4∗, and project 5‡. Test case quality and GPA are normalized to 1.

4.2 Partnership Status and Test Case Quality

We now examine the relationship between partnership status and test case quality, measured as

percentage of bugs exposed. Students worked either alone or with an optional, student-selected

partner. Our independent variable is partnership status. We control for GPA and feedback

type.

We see a statistically significant association with test case quality from partnership status, the type

of feedback students received, and GPA. We discuss this in more detail in section 5.2. In Figure 5

and Table 3, we see that the mean percentage of bugs exposed in Project 3 by the students who

worked alone was 63%, whereas the mean for students who worked with a partner was 77% of

buggy solutions, a difference of 14%. We also see that the mean percentage of bugs exposed in

Project 4 by the students who worked alone was 74%, whereas the mean for students who worked

with a partner was 83% of buggy solutions, a difference of 9%. In Project 5, the mean percentage

of bugs exposed by the students who worked alone was 63%, whereas the mean for students who

worked with a partner was 71% of buggy solutions, a difference of 8%.



Alone Partner
 

0
10
20
30
40
50
60
70
80
90

100
 

%
 B

ug
s E

xp
os

ed

Project 3

Alone Partner
 

 

Project 4

Alone Partner
 

 

Project 5

Figure 5: Student test case quality with respect to partnership status. The X-axis indicates

whether students worked alone or with a partner and test case quality is shown on the Y-axis. The

triangle indicates the mean.

Test Quality Summary for Alone vs. Partner

Project 3 Project 4 Project 5

Alone Partner Alone Partner Alone Partner

N 588 476 601 452 510 489

Mean 63% 77% 74% 83% 63% 71%

Stdev 33% 22% 25% 15% 24% 19%

Table 3: Summary of test quality statistics for partnership status.We see that the mean test

quality for students who worked with a partner was 14% higher on Project 3 than the mean test

quality for students who worked alone, 9% higher on Project 4, and 8% higher on Project 5.

5 Discussion

We observed a statistically significant association between increased automated test case feedback

and student test case quality. Notably, when the augmented feedback was taken away, students

still produced higher quality test cases. We also temper our discussion by noting that the effective

size was small compared to the contribution of GPA. We also examined student code quality as

measured by student scores on instructor ADT tests, but we did not find a statistically significant

association.

5.1 Test Case Feedback

In Projects 3, 4, and 5, we see that the experiment group consistently achieved higher mean test

case quality than the control group. After controlling for partnership status, we see that the

association between increased test case feedback and test case quality was comparable to the

association between partnership status and test case quality. We also note that the magnitudes of

these associations were much smaller than that of GPA.

In Projects 3 and 4, where the control and experiment groups received different feedback on their

test cases, we observed that the experiment group achieved higher test case quality than the

control group. The experiment group was given additional feedback on their test cases, and these



students had time to act on the additional feedback and improve their tests. In Table 2, we see that

the difference in test case quality between the two groups is statistically significant in Projects 3

and 4.

For Project 3, we see that the mean test case quality for the experiment group was 12% higher

than that of the control group. This difference translates to about 3 additional instructor buggy

solutions exposed by students in the experiment group. For Project 4, we see that the mean test

case quality for the experiment group was 13% higher than that of the control group. This

difference translates to about 3 additional instructor buggy solutions exposed by students in the

experiment group.

In Project 5, the control and experiment groups received the same feedback. This feedback

indicated only whether student tests were free of false positives. A difference in test case quality

between the control and experiment groups for Project 5 therefore supports the hypothesis that

prior test case feedback influenced student learning. We see that the mean test case quality for the

experiment group was 5% higher than the mean test case quality for the control group. This

difference translates to about 1 additional instructor buggy solution exposed by students in the

experiment group.

5.2 Partnership Status

We observed that students working with a partner produced higher quality test cases than students

working alone. We found this to be an intuitive result, as two people coming up with test cases

instead of one seems more likely to produce a more robust test suite. In Projects 3, 4, and 5, we

see that students who worked with a partner consistently achieved higher test case quality than

students who worked alone. In Table 2, we see these results to be statistically significant when

controlling for GPA. We also see that the magnitude of the association of partnership status and

test case quality was small compared to GPA.

For Project 3, the mean test case quality for students who worked with a partner was 14% higher

than for students who worked alone. This translates to exposing about 4 more instructor buggy

solutions. For Project 4, the mean test case quality for students who worked with a partner was

9% higher than for students who worked alone. This translates to exposing about 2 more

instructor buggy solutions. For Project 5, the mean test case quality for students who worked with

a partner was 8% higher than for students who worked alone. This translates to exposing about

1-2 more instructor buggy solutions.

5.3 Limitations

Our study design was experimental, but several factors were beyond our control. The three

projects included in our experimental design may have varied in their difficulty for students as

well as the difficulty of exposing instructor buggy solutions.

Our control and experiment groups came from two different semesters of the course. This design

decision was in the interest of fairness to students, rather than dividing students from one



semester into two groups. We note that both semesters were very consistent in their organization

and material.

Another factor beyond our control was student partnerships. Students chose whether to work with

a partner or alone. Furthermore, students chose their own partners.

6 Conclusions

We have examined the relationship between automated feedback and student learning of software

testing. We performed an experimental study where two groups of students received different

types of automated feedback on their test cases. We found that students who received additional

feedback on the number of instructor buggy solutions their tests exposed wrote higher-quality test

cases, even after this augmented feedback was taken away.

We also examined the relationship between student partnerships and test case quality, finding that

students who worked with a partner consistently wrote higher-quality test cases. We also note that

the magnitude of these associations was small compared to that of the association between GPA

and test case quality.

Future work could present students with software testing challenges that can be used to more

consistently evaluate student test case quality. An additional study could evaluate the effects of

students using code coverage metrics on the quality of their test cases.

Computer science educators can use the results of this study to help inform their decisions on how

to evaluate student test cases and what sort of test case quality feedback to provide to students.

While prior work and conventional wisdom indicate that students will act on the feedback they

are given, this study suggests that providing them with specific test quality metrics will improve

their ability to test software.

References

[1] Dan Hannigan and Michelle Walker. World quality report 2015-16. Technical report, 2015.

[2] A. Dupuy and N. Leveson. An empirical evaluation of the mc/dc coverage criterion on the hete-2 satellite

software. 19th Digital Avionics Systems Conference, 2000.

[3] Coverage.py. https://coverage.readthedocs.io/en/coverage-4.5.1/.

[4] Cobertura: A code coverage utility for java. http://cobertura.github.io/cobertura/.

[5] gcov - a test coverage program. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[6] Yu Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE Transactions

on Software Engineering, 37:649–678, 2010.



[7] David Carrington. Teaching software testing. Proceedings of the Australasian conference on computer science

education, pages 59–64, 1997.

[8] Edward L. Jones and Christy L. Chatmon. A perspective on teaching software testing. Journal of Computing

Sciences in Colleges, 16:92–100, 2001.

[9] Stephen H. Edwards. Improving student performance by evaluating how well students test their own programs.

Journal on Educational Resources in Computing, 3, 2003.

[10] Jaime Spacco and William Pugh. Helping students appreciate test-driven development (TDD). Proceedings of

OOPSLA, pages 907–913, 2006.

[11] Chetan Desai, David Janzen, and Kyle Savage. A survey of evidence for test-driven development in academia.

ACM SIGCSE Bulletin, 40:97–101, 2008.

[12] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On automated grading of programming

assignments in an academic institution. Computers and Education, 41(2):121 – 131, 2003.

[13] Kirsti M Ala-Mutka. A survey of automated assessment approaches for programming assignments. Computer

Science Education, 15:83–102, 2007.

[14] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introductory

programming assignments. Proceedings of PLDI, pages 15–26, 2013.

[15] James A. Bonwell, Charles C.; Eison. Active learning: Creating excitement in the classroom. ASHE-ERIC

Higher Education Reports, 1991.

[16] Michael Prince. Does active learning work? a review of the research. Journal of engineering education, 93:

223–231, 2004.


	1 Abstract
	2 Introduction
	2.1 Software Testing
	2.2 Teaching Software Testing
	2.3 Theoretical Framework
	2.4 Contributions

	3 Methods
	3.1 CS2 Course
	3.2 Control and Experiment Groups
	3.3 Data Collection and Variables

	4 Results
	4.1 Test Case Feedback and Test Case Quality
	4.2 Partnership Status and Test Case Quality

	5 Discussion
	5.1 Test Case Feedback
	5.2 Partnership Status
	5.3 Limitations

	6 Conclusions

